Geotechnical Engineering Report Gruening Middle School Earthquake Repairs Eagle River, Alaska

August 2019

Submitted To: McCool Carlson Green Historic Anchorage Train Depot 421 West 1st Avenue, Suite 300 Anchorage, Alaska 99501 Phone: (907)563-8474

By:

Shannon & Wilson, Inc. 5430 Fairbanks Street, Suite 3 Anchorage, Alaska 99518 AECC125

> Phone: (907)561-2120 E-mail: <u>klb@shanwil.com</u>

> > 103327-001

SHANNON & WILSON, INC.

TABLE OF CONTENTS

Page

1.0	INTRODUCTION1
2.0	SITE AND PROJECT DESCRIPTION
3.0	DATA REVIEW
4.0	SUBSURFACE EXPLORATIONS24.1Drilling and Test Pits4.2Dynamic Cone Penetrometer (DCP) Testing4.3Concrete Coring4
5.0	LABORATORY TESTING
6.0	SUBSURFACE CONDITIONS56.1Test Pits6.2Exterior Borings6.3Concrete Coring6.4Interior Borings and DCP7
7.0	SEISMIC CONDITIONS
8.0	OBSERVED DAMAGES
9.0	EARTHQUAKE SUMMARY
10.0	ENGINEERING CONCLUSIONS
11.0	CLOSURE/LIMITATIONS

FIGURES

1	Vicinity	Map
1	vicinity	wia

2 Site Plan

APPENDIX

А	Data Review
$\mathbf{\Lambda}$	

- B Subsurface Explorations
- C Important Information About Your Geotechnical/Environmental Report

GEOTECHNICAL ENGINEERING REPORT GRUENING MIDDLE SCHOOL EARTHQUAKE REPAIRS EAGLE RIVER, ALASKA

1.0 INTRODUCTION

This report presents the results of data review, subsurface explorations, laboratory testing, and geotechnical engineering studies conducted by Shannon & Wilson, Inc. for proposed repairs to Gruening Middle School in Eagle River, Alaska. We understand that the school was damaged during the November 30, 2018 Earthquake. The purpose of this geotechnical study was to explore subsurface conditions and provide a discussion of the geotechnical conditions at the site as they pertain to the existing school foundation and observed damage. To accomplish this, ten soil borings, two test pits, and eight Dynamic Cone Penetrometer (DCP) tests were advanced around and inside of the school building. Soil samples recovered from the borings and test pits were tested in our geotechnical laboratory and engineering studies were performed to support foundation repair design. Presented in this report are descriptions of the site and project, a historical data review, subsurface explorations and laboratory test procedures, an interpretation of subsurface conditions, and conclusions and generalized recommendations from our engineering studies.

Authorization to proceed with this work was received in the form of a signed Notice to Proceed (NTP) by Mr. Garrett Burtner, AIA of McCool Carlson Green (MCG) on June 20, 2019. The work was performed in general accordance with our June 11, 2019 proposal with the following exceptions: the test pits were advanced with less total length and the interior borings were advanced until auger refusal. Additionally, one of the exterior test pits was removed due to conflicts with utilities around the building perimeter.

2.0 SITE AND PROJECT DESCRIPTION

The Gruening Middle School is located at 9601 Lee St, south of Eagle River Road and west of Eagle River Loop Road, in Eagle River, Alaska. The site is developed with the middle school building, paved parking and walking areas, and several large grass and/or treed areas. In general, the site was sloping slightly downward toward the southwest with about ten feet of relief from one side of the school to the other. A vicinity map showing the general project area is included as Figure 1. Figure 2 includes a site plan showing the boring locations and other prominent site features.

FINAL Gruening MS EQ Repairs Report.docx

We understand that the preliminary site investigation identified potential settlement or displacement on the east end of the building and gymnasium, including possible settlement under the gymnasium floor and displacement under the stairwell on the east side of the gymnasium. We understand that the Anchorage School District (ASD) wishes to evaluate the damage and design repairs to the building.

3.0 DATA REVIEW

Subsurface and geotechnical information from the post-earthquake site evaluation was provided by MCG. The report is primarily a review of the historical data available and a summary of the post-earthquake condition of the school. This report is included in Appendix A.

Sources of Information

• Draft – Geotechnical Evaluation of Gruening Middle School Foundation Earthquake Damage, Eagle River, Alaska. Golder Associates (Golder). February 11, 2019.

We reviewed the Golder report and the supporting information contained therein as part of our effort. Golder's report presents an opinion that there were no obvious geotechnical conditions evident in the existing information that would suggest that the site would be vulnerable to significant settlement or ground displacement due to seismic shaking. As a result, Golder recommends additional explorations be conducted on site to determine if soil conditions exist at the site that could have contributed to the experienced earthquake damage. We generally agree with these conclusions provided in by Golder in their report.

4.0 SUBSURFACE EXPLORATIONS

Subsurface explorations at the site consisted of advancing and sampling ten soil borings across the site, six of which were outside of the school building, the other four of which were advanced inside of the gymnasium. Additionally, two test pits were excavated and eight DCP tests were advanced. Exterior boring locations were selected to provide coverage of conditions near areas of distress as well as areas where distress was not observed for comparison purposes. Test pit locations were selected to observe conditions adjacent to and directly beneath the portions of the building that experienced distress. The interior borings were selected to provide even coverage over the perimeter of the gym floor and the DCP test locations were selected in part by observations in our interior borings and to target areas close to building distress. The approximate boring, test pit, and DCP locations, shown on Figure 2, were selected by our onsite representative, with input from MCG, to provide reasonable coverage of both the damaged areas and the entire site and to avoid conflicts with onsite utilities. An experienced representative from

Shannon & Wilson was present during drilling and excavation to locate the borings and test pits, observe drill action and soil removal, collect samples, log subsurface conditions, and observe groundwater conditions.

4.1 Drilling and Test Pits

The borings, designated Borings B-1 through B-10 were drilled by Discovery Drilling of Anchorage, Alaska between June 27 and July 3, 2019 using a truck-mounted CME-75 drill rig for the exterior borings and a track mounted Geoprobe 6712DT for the interior borings. The test pits were advanced by Northern Excavation of Chugiak, Alaska on June 26, 2019 using a Hitachi Zaxis 160 LC excavator. Exterior boring locations were positioned using a handheld GPS device capable of 10-foot accuracy. Locations of interior borings were estimated based on swing tie measurements from interior structural features. The surface elevations shown on the boring and test pit logs for building exterior work were estimated from topographic contours provided by the Municipality of Anchorage GIS department. Elevations for interior borings were estimated based on the planned finish floor elevation of the gym provided in the reviewed building design plans. The boring locations shown on the site plan and the elevations reported on the boring and test pit logs should be considered approximate.

The borings were advanced with 3 1/4-inch inner diameter (ID), continuous flight, hollow-stem augers to depths of approximately 6 to 20 feet below ground surface (bgs). As the borings were advanced, samples were generally recovered using Standard Penetration Test (SPT) methods at 2.5-foot intervals to 10 feet bgs and 5-foot intervals thereafter to the bottom of the boring. With the SPT method, samples are recovered by driving a 2-inch outer diameter (OD) split-spoon sampler into the bottom of the advancing hole with blows of a 140-pound hammer free falling 30 inches onto the drill rods. For each sample, the number of blows required to drive the sampler the final 12 inches of an 18-inch penetration into undisturbed soil is recorded. Where the sampler did not penetrate the full 18 inches, our log reports the blow count and corresponding penetration in inches. Blow counts are shown graphically on the boring log figures as "penetration resistance" and are displayed adjacent to sample depth. The penetration resistance values give a measure of the relative density (compactness) or consistency (stiffness) of cohesionless or cohesive soils, respectively.

During test pit excavations, grab samples were collected from representative soil horizons encountered in the test pit. Approximate relative density classifications of the encountered soils were based on observing excavation action and comparison of soil types to those encountered in the geotechnical borings.

The soils encountered in borings and test pits were observed and described in the field in general accordance with the classification system described by ASTM International (ASTM) D2488. Selected samples recovered during drilling were tested in our laboratory to refine our soil descriptions in general accordance with the Unified Soil Classification System (USCS) described in Appendix B, Figure B-1. Frost classifications were also estimated for samples based on laboratory testing (sieve analyses [P200] and hydrometer [0.02 mil]) and are shown on the boring logs. The frost classification system is presented in Appendix B, Figure B-2. Summary logs of the borings and test pits are presented in Appendix B, Figures B-3 through B-14.

Upon completion, the test pits were backfilled with the materials removed during excavation and periodically tamped with the excavator bucket. The materials were roughly segregated during digging and returned to the test pits such that no significant change in location or elevation occurred as result of the excavation activities. It should be noted that existing utilities adjacent to the exterior footings were impacted during test pit excavations. Impacts were communicated to the project team during fieldwork and repairs were made to impacted lines per the direction of the ASD. The exterior borings were completed by backfilling the hole with auger cuttings produced during drilling. The interior borings were completed by backfilling the hole with cement and the cuttings were transported offsite for disposal.

4.2 Dynamic Cone Penetrometer (DCP) Testing

Shannon & Wilson performed DCP tests July 1 through 11, 2019. DCP tests were performed at the locations of Borings B-07 through B-10 prior to advancing the borings, as well as at four additional locations in the gymnasium, Test Holes TH-1 through TH-4. The DCP testing was performed in general accordance with the procedure as described by ASTM D6951 and the Office of Minnesota Road Research's *User Guide to the Dynamic Cone Penetrometer*. The DCP measures penetration per blow, which is an indication of the subgrade stiffness. The DCP data were correlated to the California Bearing Ratio (CBR). Results of the DCP tests are presented in Appendix B, Figures B-15 through B-22.

4.3 Concrete Coring

Prior to advancing the interior borings described in Section 4.1 and the DCP testing in Section 4.2, we cored through the existing concrete slab floor in the gymnasium. At each coring location, the thickness of the concrete floor slab was noted and inspection of the conditions directly beneath the slab were observed. Our representative also examined the outer edge of the cored area to detect support soil subsidence beneath the slab and voids beneath the slab.

5.0 LABORATORY TESTING

Laboratory tests were performed on soil samples recovered from the borings to confirm our field classifications and to estimate the index properties of the typical materials encountered at the site. The laboratory testing was formulated with emphasis on determining gradation properties, natural water content, and frost characteristics.

Water content tests were performed on each sample recovered from the borings. The tests were generally conducted according to procedures described in ASTM D2216. The results of the water content measurements are presented graphically on the boring logs presented in Appendix B, Figures B-3 through B-14.

Grain size classification (gradation) testing was performed to estimate the particle size distribution of selected samples from the borings. The gradation testing generally followed the procedures described in ASTM C117/C136 and D422. The grain size testing results are presented as Appendix B, Figure B-23, and summarized on the boring logs as percent gravel, percent sand, and percent fines. Percent fines on the boring logs are equal to the sum of the silt and clay fractions indicated by the percent passing the No. 200 sieve. Note that hydrometer testing indicates particle size only and visual classification under USCS designates the entire fraction of soil finer than the No. 200 sieve as silt. Plasticity characteristics (Atterberg Limits results) are required to differentiate between silt and clay soils under USCS.

Atterberg Limits were evaluated for two samples of fine grained soil to estimate plasticity characteristics. The tests generally followed procedures described in ASTM D4318. The results of these tests are presented in Appendix B, Figure B-24.

6.0 SUBSURFACE CONDITIONS

The subsurface conditions encountered in our explorations at the site are depicted graphically on the boring logs in Appendix B Figures B-2 through B-12, on the test pit logs in Appendix B, Figures B-13 and B-14, and on the DCP logs in Appendix B, Figures B-15 through B-22. In general, our explorations encountered 3.5 to 9 feet of fill over native soils. The fill soils were typically sands and gravels and the native soils typically consisted of sands and gravels with an increased fines content relative to the fill soils. The exterior borings, Boring B-01 through B-06 were advanced through an approximately 1 to 3 inch thick grass mat. The test pits, Test Pits TP-1 and TP-2 were advanced through a combination of asphalt sidewalk and grass mat. Borings B-07 through B-10 were advanced indoors through 5 to 6 inches of concrete. Occasional organics and construction debris were observed in the upper 2 feet of several exterior borings and in the test pits.

Based on typical penetration resistance values ranging between 12 and greater than 50 blows per foot (bpf), with frequent sampler refusal, the granular soils encountered by our borings would be considered medium dense to very dense. According to our laboratory tests, fines contents in the fill soils ranged between approximately 4 and 15 percent and fines content in the native soils ranged between approximately 19 and 37 percent. Moisture contents generally ranged from about 1 to 10 percent. Atterberg Limits identified the fines as plastic in two samples of native soil.

Groundwater was not encountered in any of the borings, however small seeps were encountered in one of the test pits and several of the borings at depths ranging from approximately 5.2 to 21.5 feet bgs.

6.1 Test Pits

Based on utility drawings provided by ASD and on visual observations in our test pits there appear to be numerous utilities adjacent to the school's foundation. In Test Pit TP-1 both footing drain and storm drain piping were encountered in close proximity to one another, with these systems overlapping each other in one location. In Test Pit TP-2 only footing drain piping was encountered. Based on our observations, the footing drain in Test Pit TP-2 was constructed within a clean gravel envelope surrounded by a drainage geofabric. The drain in Test Pit TP-1 did not have the same gravel/fabric surrounding and it appeared that the end of the drain was left open with drainage fabric stuffed into the end of the pipe. Based on our observations in the test pit, we believe that the location of these test pits are intended to be the up-gradient ends of the two footing drains that run on the north and south sides of the building, draining to the west. The footer in Test Pit TP-1 had what appeared to be excess concrete at the top forming a ledge that extended approximately 8 to 12 inches from the face of the stem wall. This feature was not observed in the footer in Test Pit TP-2.

The soil conditions encountered in the test pits included loose to medium dense granular fill materials with scattered organics and debris to between 6 and 6.5 feet bgs. Native soils under the fill consisted of dense to very dense silty sand with gravel. In each test pit, the base of the footing was approximately 5.5 feet bgs and the soils beneath the footings appeared relatively compact and did not contain organic debris.

6.2 Exterior Borings

Based on our borings, it appears the fill may be thicker on the southern part of the site than the more northern portion, which agrees with our understanding of the site development. In general, fill soils consisted of sand and gravel with varying fines content (but typically less than

approximately 15 percent) down to between 4.5 and 9 feet bgs. In each boring, SPT sampling suggests that fills are medium dense to very dense and typically dense or greater below the anticipated footing depth of 4.5 to 5.5 feet bgs. Native soils beneath the fills consisted of dense to very dense silty sand with gravel and silty gravel with sand.

6.3 Concrete Coring

The concrete slab in the gym ranged in thickness from approximately 4 to 6 inches, with the greatest thickness variations occurring around the outer edges of the gym. We encountered utilities directly beneath the slab, with two PVC conduits encountered near Boring B-10 and potentially additional conduit located near Test Hole TH-4. Plumbing drawings for the school indicate that water lines may be located under the slab near the outer perimeter of the gym in several locations. In all of the cores through the gym floor vapor barrier was observed to be present below the slab.

At all locations cored through the gym floor slab the foundation appeared to be resting on the subgrade soil with no obvious voids or gaps visible. Two concrete cores were advanced through areas of the slab containing relief cuts. It was observed that in both relief cut locations the slab had a crack running for the full vertical thickness extending down from the relief cut.

6.4 Interior Borings and DCP

Borings advanced through the slab encountered dense to very dense fill and native soils directly beneath the floor slab to the depths of the borings. Fill and native soil conditions generally agreed with conditions encountered in the exterior borings though we did not encounter intermixed organics. Fill soils extended to depths of 3.6 to 6.5 feet bgs and consisted of well graded sand with silt and gravel. Native soils were largely silty sand with gravel.

The DCP tests generally indicated increased soil densities below 0.3 to 0.8 feet below the base of concrete. The SPT sampler generally indicated increased soil densities below 0.5 feet below the base of concrete, which generally agrees with the DCP findings. Test Hole TH-2 was the only DCP test where refusal was not reached prior to reaching the end of the rod.

7.0 SEISMIC CONDITIONS

Based on our explorations and local experience, the site class according to the 2012 International Building Code (IBC) will be D for a stiff soil profile based on the blow count (N) method with typical blow counts ranging between 15 and 50 blows per foot. We believe that the naturally occurring soils at this site have a low susceptibility to slope failure, liquefaction, and surface

rupture. Therefore, we believe that a Site Class D will be the most representative of the site. Based on Section 1613.5 of IBC 2012, S_s and S_1 for the Maximum Considered Earthquake were estimated at 1.5 and 0.687 times the force of gravity (g), respectively. The site specific modifying coefficients for the spectral response accelerations are $F_A = 1.0$ and $F_v = 1.5$ for the short and long periods, respectively. The S_{MS} and S_{M1} were calculated to be 1.5 and 1.03 g respectively. The computed S_{DS} and S_{D1} are 1.0 and 0.687 g.

8.0 OBSERVED DAMAGES

A representative from Shannon & Wilson was present at the site on numerous occasions between June 19 and July 11, 2019. Our observations were generally constrained to the area of the building surrounding the gymnasium and the adjacent East stairwell. Cracking was noted in both the East and North stairwells attached to the gymnasium. The cracking was generally located where the stairwell exterior wall and gymnasium exterior wall meet. The most severe cracking was noted in the northern corner of the East stairwell. It was also noted that the southwest gymnasium wall appeared to have suffered from earthquake related damage as it appeared to have been temporarily structurally reinforced with anchors at numerous points connecting the wall to the floor and the building staff reported that they were instructed not to walk along the back (gymnasium) side of the wall on the mezzanine level. Similar wall anchoring appears to be in place at other locations in the school.

9.0 EARTHQUAKE SUMMARY

On November 30, 2018 at 8:29 am, southcentral Alaska experienced a 7.1 magnitude earthquake that occurred approximately 5 miles north of Anchorage. With a depth of approximately 27 miles, the shaking was felt by a large portion of southcentral Alaska. The strong shaking lasted for approximately 20 seconds and the peak ground acceleration (PGA) in the Anchorage and Eagle River areas was generally recorded ranging from 0.14 to 0.56 times the gravitational constant (g), with a large number of sites reporting PGAs in the range of 0.23 to 0.30g. Seven minutes after the main shock an M5.7 aftershock occurred, the largest of the aftershocks to date. The closest ground motion sites to the project were located at the Chugiak Volunteer Fire Station 32 and at Saint Christopher Episcopal Church in Anchorage, which reported PGAs of 0.298g and 0.295g, respectively. Based on this information, we believe that the ground motions experienced by this site were likely between 0.25 and 0.35g.

There was a wide variety of damage to structures in southcentral Alaska as a result of the November 30 earthquake, however there are several common themes relating much of the damage. Many structures that experienced damage were constructed over thick layers of poor

FINAL Gruening MS EQ Repairs Report.docx

quality (loose and/or silty) fills, are located in areas with regionally shallow groundwater, or are in areas with loose or liquefiable soils. Both liquefaction and consolidation related failures have been identified, as well as failures related to soil displacement, especially in steep embankment fills.

10.0 ENGINEERING CONCLUSIONS

Based on our observations of the building distress and the conditions encountered in our explorations, it is difficult to determine if the damages are a direct result of foundation distress or failure. The native soils at the site appear to be dense to very dense and not susceptible to failure or strength loss during a seismic event. Furthermore, fill materials under the gym floor slab and footings appears to be in a dense and compact condition. The loosest conditions under the slab were encountered in Test Hole TH-2 where refusal was not encountered within the length of the rods and a low CBR value of 2 directly below the slab. There does not appear to be a significant potential for significant amounts of loose fill and shallow groundwater under the foundation elements. Our test pit, boring, or DCP testing explorations did not reveal any obvious causes of soil conditions that would lend themselves to poor foundation performance during an earthquake.

The condition that we encountered with the greatest potential for contributing to poor foundation performance was apparently loose soil conditions that may be present adjacent to the exterior foundation stem walls. The fill soils in our test pits adjacent to the foundation stem walls appeared to be relatively loose (in comparison to the fill soils under the slab and footings) and contained scattered organics and debris. Furthermore, utilities buried outside the perimeter of the building may have made compaction during construction more difficult in some locations. These utilities also carry stormwater from roof drains and other stormwater works and, if full and leaking at the time of the earthquake, could have been contributing excess moisture to the loose soils adjacent to the stem walls. It is possible that loose soils may have not provided sufficient lateral support during the earthquake, which may have contributed to the damages to the structure in the north and east stairwells. It should be noted that the limited area of footings and stem walls that we exposed during test pit excavation did not reveal foundation damage or out-of-plumb stem walls. Additionally, our borings which were advanced within 5 to 10 feet of the foundations did not encounter loose soil conditions.

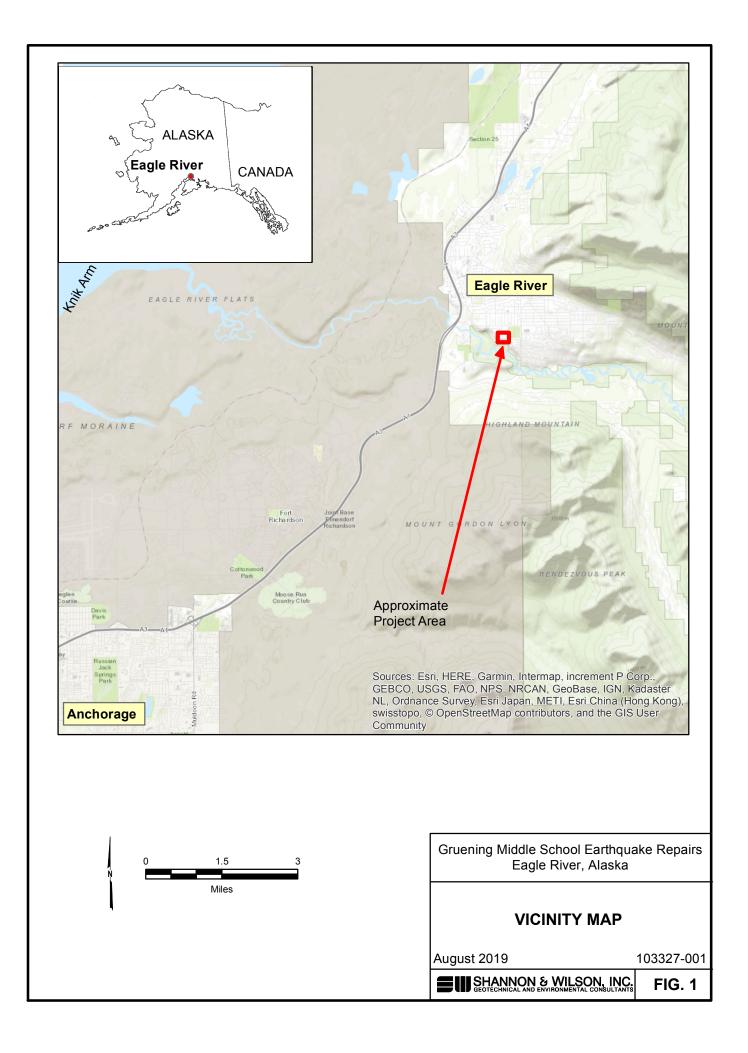
In conclusion, we did not encounter obvious conditions in our explorations that would account for the poor performance of the structure. The conditions described in the shallow portions of our test pits outside of the east stairwell may have provided insufficient lateral support and contributed to the observed damage, though we are unable to draw a definitive conclusion to that possibility. Further investigation of the perimeter footing and stem wall may be able to clarify if movement in the foundation occurred. However, exposing the foundation for long distances will be difficult given the location of buried utilities outside of the building. Other conditions may exist under the building that caused distress in interior walls, but based on our explorations, those conditions would be highly localized and therefore less likely to cause larger scale effects observed in the building. As such, we believe that it is possible that the damages could be more likely caused by structural deficiencies.

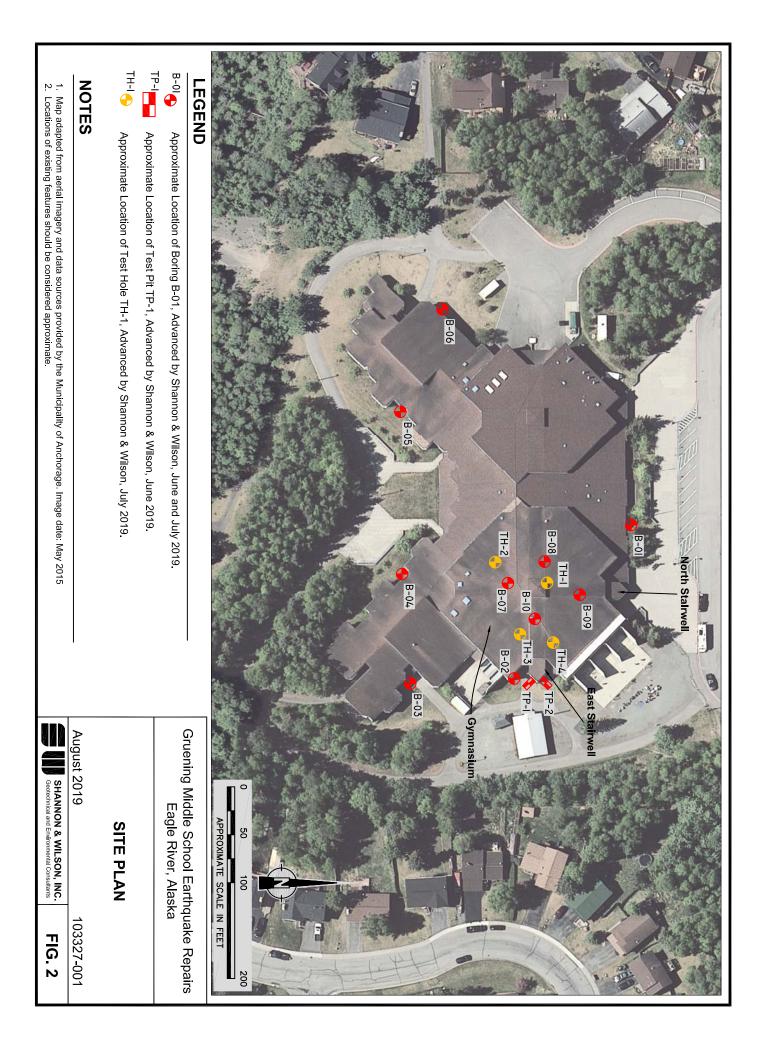
11.0 CLOSURE/LIMITATIONS

This report was prepared for the exclusive use of our client and their representatives for evaluating the site as it relates to the geotechnical aspects discussed herein. The analyses and conclusions contained in this report are based on site conditions as they presently exist. It is assumed that the exploratory borings are representative of the subsurface conditions throughout the site, i.e., the subsurface conditions everywhere are not significantly different from those disclosed by the explorations.

The conclusions in this report are not intended to be used for final repair design. The intent of the explorations was to evaluate the local conditions around the building and aid in determining whether subsurface conditions contributed to damages caused by the November 30, 2019 earthquake. We assume that the information and conclusions included herein will be used by the ASD in the decision-making process for planning whether repairs to the building will be conducted or if the structure will be replaced. Additional engineering analysis, and potentially subsurface investigations depending on the repair approach, will be needed to develop final design recommendations for the repair. Shannon & Wilson has prepared the attachments in Appendix C *Important Information About Your Geotechnical/Environmental Report* to assist you and others in understanding the use and limitations of the reports.

Copies of documents that may be relied upon by our client are limited to the printed copies (also known as hard copies) that are signed or sealed by Shannon & Wilson with a wet, blue ink signature. Files provided in electronic media format are furnished solely for the convenience of the client. Any conclusion or information obtained or derived from such electronic files shall be at the user's sole risk. If there is a discrepancy between the electronic files and the hard copies, or you question the authenticity of the report please contact the undersigned.


We appreciate this opportunity to be of service. Please contact the undersigned at (907) 561-2120 with questions or comments concerning the contents of this report.


SHANNON & WILSON, INC.

Stephanie Dow, EIT Geotechnical Engineering Staff

Kyle Brennan, P.E. Vice President

SHANNON & WILSON, INC.

APPENDIX A

DATA REVIEW

February 11, 2019

GEOTECHNICAL EVALUATION OF GRUENING MIDDLE SCHOOL FOUNDATION EARTHQUAKE DAMAGE, EAGLE RIVER, ALASKA

Golder Associates Inc. (Golder) is pleased to present this report summarizing our review of historic information relating to design and construction of Gruening Middle School, located in Eagle River, Alaska (Figure 1). We understand that school was damaged in the November 30, 2018 earthquake, and is currently closed to the public due to the damage. BDS Architects (BDS) is under subcontract to Anchorage School District (ASD) to lead planning and design efforts to repair the damage. Planning efforts for renovation of the school include a geotechnical evaluation of the site.

The first phase of geotechnical site evaluation is review of available data related to school design and construction. Golder completed the review of site data presented in this report following a site visit on January 24, 2019 by Golder engineers Mark Musial, PE, and John Thornley, PE, who met with representatives of ASD, Reid Middleton, Inc., and BDS. The purpose of the site visit was to observe 1) separation of an exterior stairwell from the main gymnasium building, 2) apparent settlement of the mezzanine surrounding the gymnasium, and 3) possible settlement of the gymnasium floor; however, other types of damage were also noted in walls and corridors surrounding the gymnasium area.

The conclusions presented in this report were prepared in accordance with our proposal to BDS dated January 28, 2019 to compete the general scope of work outlined below.

- Reviewing historical air photos of the site prior to development of the school.
- Reviewing Municipality of Anchorage (MOA) LiDAR data to establish site topography prior to the earthquake.
- Reviewing geotechnical reports, plans, and as-built records for the school to establish initial design conditions and configuration of foundation elements.
- Comparing pre-earthquake and post-earthquake data, if available, in order to identify changes that may have occurred in the site grading, foundations, or gymnasium mezzanine area.

T: +1 907 344-6001 +1 907 344-6011

Developing a scope of work and cost estimate for conducting a geotechnical site investigation that may be needed to evaluate the soil and foundation conditions, identify possible causes of related settlement distress, and present recommendations for rehabilitation and stabilization of foundation soils.

1.0 SITE CONDITIONS/TOPOGRAPHY

Gruening Middle school is located on top of bluff above a slope which extends approximately 210 feet down to Eagle River at an approximate slope of 2H:1V (horizontal to vertical). The main school building is approximately 100 feet north of the slope, with elevations ranging from 483 feet at the top of the bluff to 493 feet on the north side of the school.

Grading plans for the site were included in the design drawings. A review of the drawings indicates that the original ground under the structure ranged from approximate elevation 480 feet to 485 feet, with the ground sloping to the south towards the bluff. According to the design documents, the finished floor elevation in the gymnasium area of the school is 487 feet.

The project grading plans indicate higher ground elevation east of the school, near the residential developments, which is consistent with observations made during our January 2019 site visit. The slope on the east side of the property appears to range from approximately five to 12 feet high and slopes west down towards the school property.

A cleared area along the slope leading to Eagle River exists southwest of the school, as seen in Figures 2 through 6. Based on the utility plans, this area has a storm outfall easement that contains a buried 18-inch corrugated steel pipe. The area is also visible on the more recent aerial imagery (Figure 7).

2.0 GEOLOGIC SETTING

The Eagle River Valley is a large valley in the western Chugach Mountains with local topography and geology defined by glaciation during the Pleistocene and late Tertiary. Bedrock in the area is generally a mix of weakly metamorphosed sedimentary and igneous rocks overlain by soils composed of alluvial outwash and moraine deposits. Soil overburden is relatively thin or absent on steeper slopes and mountainous areas but can be up to 700 feet thick in the Eagle River Valley. Glacial erratics are present. The topography is generally flat to rolling in the mid valley. The vegetation consists of a mixed forest of spruce, birch, and some poplar.

HLA mapped the site as seismic zone 2 in their 1979 geohazards study for the MOA (HLA, 1979). The report defines seismic zone 2 as "moderately low ground failure susceptibility".

The soils at the Gruening Middle School site are identified by the United States Geological Survey (USGS) in 1989 as fill material, while the soils immediately surrounding the site were identified as ground moraine, glacial till composed of poorly sorted gravel with small amounts of clay and silt (Yehle and Schmoll, 1989). Bedrock in the vicinity of the school is thought to be greater than 250 feet below ground surface.

3.0 BACKGROUND DATA REVIEW

The following sections provide a summary of data provided by BDS related to historic site conditions and geotechnical engineering, as well as change detection analysis of LIDAR data performed by Golder.

3.1 Specifications and Design Drawings

The specifications and design drawings for the school, titled "Eagle River / Chugiak / Eklutna Junior High School, Specifications, Drawings, and Contract Documents", were developed by Lane+Knorr+Plunkett Architects and Planners and submitted to ASD and the MOA in December 1981. The design documents include 54 pages of specifications that are include in Volume 1 of the documents and contain the geotechnical report for the site by Harding-Lawson Associates (HLA, 1981), which is discussed in Section 3.2.

- Sheet C-5. Grading Plan, South. The finish floor elevation in the gymnasium area is shown as elevation 487 feet, which appears to be within zero to three feet of the existing ground elevation in the vicinity of the gymnasium, which slopes to the southwest. Other positions of the building also appear to have finish floor elevations with a few feet of existing grades and appears to indicate that foundations would be in compacted native soil or structural fill.
- Sheet S-1. General Notes and Typical Details. Typical foundation details and a footing schedule are provided on this sheet. The footing schedule provides footing sizes and installation depths. A note on the sheet indicates that "All footings shall bear on undisturbed soil overlaid with 4" (min.) of compacted granular NFS fill" (Lane+Knorr+Plunkett, 1981).
- Sheet S-3. Foundation Plan/East Wing. Foundations in the stairwell appear to be spread footings with widened areas at columns. Similarly, the east and west walls of the gymnasium, which are reported to be tilting, appear to be supported on spread footings. In the gymnasium, the plan shows six-inch diameter pipe columns supported on spread footings.
- Sheet S-12. Foundation Sections & Details. This sheet shows a number of cross sections for the eastern side of the school, including the gymnasium. Foundation details, including footing size and fill requirements are not presented on this sheet, but are outlined elsewhere in the document, including in the specifications as well as in the geotechnical report discussed in Section 3.2.

Copies of the plan sheets and specification sheets containing the geotechnical report are included in Appendix A.

3.2 Geotechnical Exploration

The geotechnical study (HLA, 1981) consisted of drilling and sampling test borings at the locations shown in Figure 2.1. Comparison of dimensions shown in Figure 3.1 indicate that the school building appears to be in approximately the same location and general shape as the existing building. One test boring (HLA Test Boring 12) is at the corner of the gymnasium at the location of the separated stairwell. Other site features of note are ponded surface water observed by HLA around the building footprint, indicated as 'wet areas' by HLA in Figure 3.1.

The data obtained by HLA indicates relatively consistent subsurface conditions, generally characterized as a dense silty gravel with sand below a near surface layer of sandy silt (Figure 3.2). Boulders and cobbles were encountered in the boreholes. Groundwater was encountered in five of the 31 boreholes at the time of drilling. Groundwater was generally observed ranging from 10 to 20 feet below ground surface (bgs) at the time of drilling. One borehole, HLA Test Boring 22, encountered water at three feet bgs at the time of drilling, but groundwater was measured to be 16 feet bgs three weeks after completion of drilling.

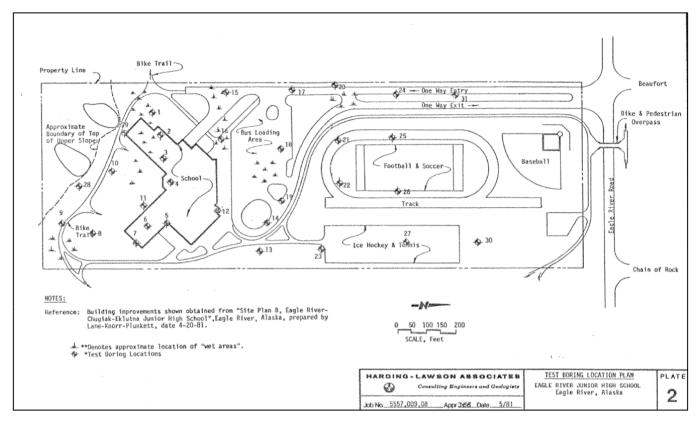


Figure 3.1: Borehole Location Map (HLA, 1981)

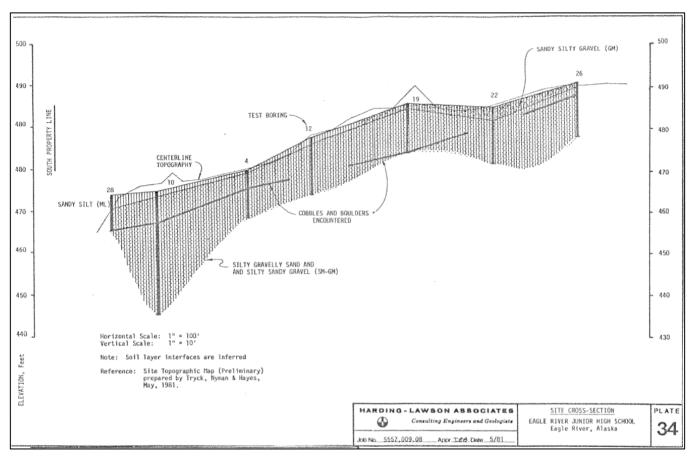


Figure 3.2: Cross Section Showing Generalized Subsurface Conditions (HLA, 1981)

Recommendations for site development and foundations are provided in the HLA (1981) report, including design of footings for 3,000 psf bearing pressure for dead loads and 4,000 psf for total loads including wind and seismic. The design criteria provided by HLA include use of insulation adjacent to exterior footings to limit the potential for frost penetration beneath exterior footings.

3.3 Other Documents

Construction of the school began in 1982. We understand that litigation occurred related to school construction. Golder was provided various documents combined in a nearly 700-page PDF of information discussing the basis of a claim for equitable adjustment made by the prime contractor, Rogers and Babler. The documents also contained correspondence between the prime contractor, Architect, Municipality of Anchorage, and others. According to the documents, there were many issues during construction that caused delays and cost overruns. The outcome of the claims is unknown, and no legal documents or records of court decision were reviewed.

The documents were reviewed to better understand the geotechnical aspects of the project. The documents indicate the following:

- Construction quality control was completed by the owner.
- Compaction testing of fill was completed by the owner and a third party hired by the prime contractor.

- Fill material was rejected on numerous occasions due to oversized material, but the issue was resolved after material was screened and run through a crusher.
- There were issues in the design drawings with the foundation footing elevations that had to be resolved with revised design drawings.

3.4 Aerial Imagery / LiDAR

3.4.1 Aerial Imagery

Golder acquired a series of historical aerial images to review the development of the school site and surrounding areas. Specifically, we reviewed aerial images acquired in 1950, 1953, 1957, 1962, 1972, 1977, 1978, 1982, 1984, 1990, 1996, 2002, and 2015. In addition, Golder acquired and reviewed stereo aerial images from 1982, including photos taken on April 30, June 1, June 24, and September 27 of that year, documenting various stages of construction at the school site. Figures 2 through 6 present aerial images of the project site for select years.

Review of the historic aerial imagery indicate the following:

- Prior to 1950, vegetation around the school site extending down to Eagle River was absent, while surrounding areas were forested.
- Between 1950 and 1978, the site photographs shown vegetation recovering. No other development was observed.
- In April 1982 clearing and initial earthwork had begun (Figure 3). By June of 1982 the site was being leveled (Figures 4 and 5), and by September 1982 most of the exterior of the school had been completed.
- Subsequent aerial photographs (1984 to 2015) show development in surrounding areas, but no significant change at the school site.

3.4.2 LiDAR / Change Detection Analyses

Golder acquired three different years of Airborne LiDAR data (2014, 2015, and 2018 – post earthquake), and performed a change detection analysis to look for ground movement related to the earthquake. The change detection analyses were performed using two types of filtering on the LiDAR datasets. The first LiDAR dataset analyzed filtered out everything but the ground or bare earth points, and the second LiDAR dataset analyzed used all points, including structures such as the top of the school. Figure 7 presents the Hillshade image of 2018 data obtained after the earthquake, showing the site and surrounding area.

The change analysis did not indicate any ground movements more than two feet around the school grounds or the structure between 2015 and 2018. These results are within the accuracy of the analysis, and they cannot be used to identify changes less than two feet. However, they do show that large scale ground displacement did not occur at the school, unlike the landslide that appears to have occurred on the bluff slope above Eagle River located approximately 650 feet southeast of the school.

4.0 CONCLUSIONS

Golder reviewed multiple documents related to the design of the Gruening Middle School in order to determine if there were unique site conditions warranting further investigation and better refine the scope of additional field investigations. Results of the review do not point to an apparent geotechnical reason for the reported settlement

of mezzanine areas and tilting of walls in the gymnasium, as well as separation of the stairwell area north of the gymnasium from the main building. Rather, the results of our review suggest that the reported structure deformations, if related to site conditions and foundation performance, will require further site-specific site investigation.

A geotechnical investigation will allow location-specific data to be collected and used to assist with identifying possible causes of related settlement distress and assist in developing recommendations for rehabilitation and stabilization of foundation soils, if needed. We have attached (Appendix B) a proposed scope of work and cost estimate to provide a site-specific geotechnical investigation inside and outside the gymnasium and stairwell.

5.0 USE OF REPORT

This report was prepared for BDS for the use in evaluating the damage to Gruening Middle School that occurred during the November 30, 2018 earthquake. This report is based on data and information collected by others and provided to Golder. We accept no responsibility for any deficiency, misstatements or inaccuracy contained in this report as a result of omissions, misstatements or fraudulent acts of published data. Golder did not independently verify the accuracy and completeness of the data and information provided for this report.

Our work followed the standard of care expected of professionals undertaking similar work in Alaska under similar contractual conditions and site constraints. No warranty expressed or implied is made.

6.0 CLOSING

Thank you for the opportunity to assist BDS with this project and for considering the attached proposal for sitespecific investigation. If you have comments or questions, please contact John Thornley at (907) 865-2536.

Golder Associates Inc.

DRAFT, No Signatures

John D. Thornley, PE Associate, Senior Geotechnical Engineer Mark R. Musial, PE Principal, Senior Geotechnical-Permafrost Engineer

BBS/JDT/MRM/mlp

Attachments: Figure 1: Vicinity Map Figures 2 – 6: Historic Aerial Imagery Figure 7: Hillshade Image – 2018 LiDAR Appendix A: Select Historical Documents Appendix B: Proposal for Geotechnical Investigation

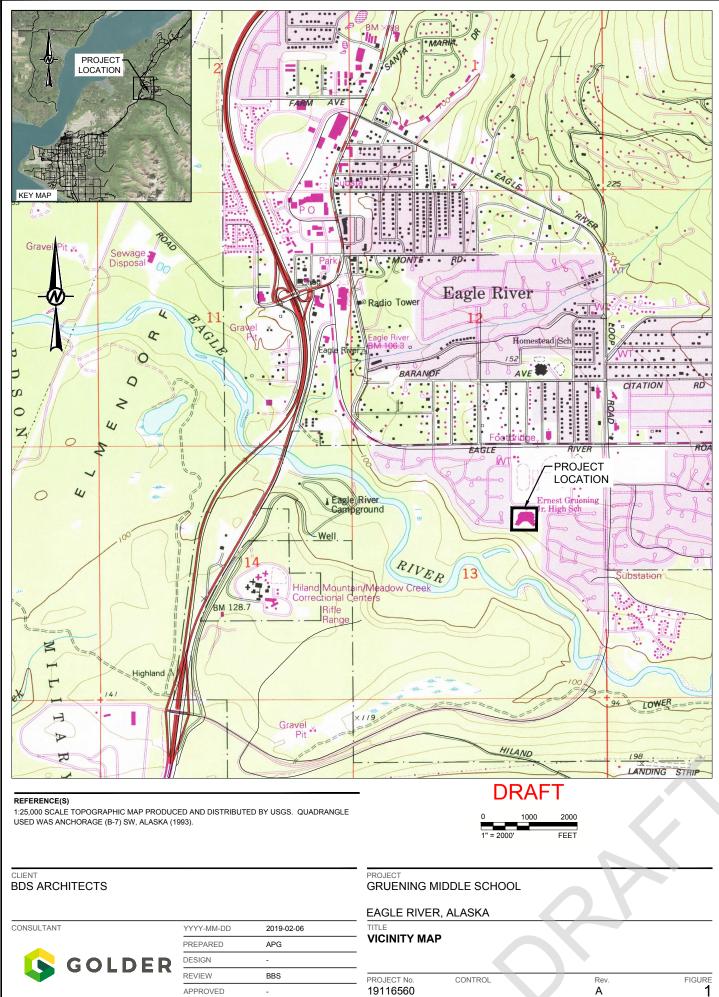
https://golderassociates.sharepoint.com/sites/103615/deliverables/1911656 gruening data review - draft.docx

7.0 REFERENCES

Harding-Lawson Associates (HLA). 1979. Seismically-Induced Ground Failure Susceptibility. Accessed digitally from the Municipality of Anchorage, Information Technology Department.

Harding-Lawson Associates (HLA). May 1981. Report titled "Soil Investigation Eagle River Junior High School, Eagle River, Alaska", pp 14-17 of 55 in "Specifications, Drawings, and Contract Documents" by Lane+Knorr+Plunkett.

Lane+Knorr+Plunkett, Architects and Planners. December 1981. Eagle River/Chugiak/Eklutna Junior High School, Specifications, Drawings, and Contract Documents. Prepared for the Anchorage School District and the Municipality of Anchorage.


Rogers & Babler. August 1983. Ernest Gruening Jr. High School, Eagle River, Alaska, Proposal for Equitable Adjustment. PDF copy and associated documents provided by BDS Architects on January 29, 2019.

Yehle, L.A., and Schmoll, H.R., 1989, Surficial geologic map of the Anchorage B-7 NE quadrangle, Alaska: U.S. Geological Survey Open-File Report 89-318.

FIGURES

FEF		

AIRPHOTO DATED MAY 31, 1962 WAS OBTAINED FROM THE U.S. GEOLOGICAL SURVEY (USGS) AERIAL PHOTOGRAPHY SINGLE FRAME RECORDS COLLECTION AND DISTRIBUTED BY U.S. GEOLOGICAL SURVEY (USGS) AND EARTH RESOURCES OBSERVATION AND SCIENCE (EROS) CENTER.

CLIENT BDS ARCHITECTS

CONSULTANT	YYYY-MM-DD	2019-02-07
	DESIGNED	-
GOLDER	PREPARED	APG
	REVIEWED	BBS
	APPROVED	-

PROJECT GRUENING MIDDLE SCHOOL

EAGLE RIVER, ALASKA

TITLE

HISTORICAL AIRPHOTO - MAY 31, 1962

PROJECT NO. CONTROL REV.	
19116560 A	

FIGURE

AIRPHOTO DATED APRIL 30, 1982 WAS ACQUIRED AND PROVIDED BY QUANTUM SPATIAL, ANCHORAGE ALASKA. COPYRIGHTED

CLIENT **BDS ARCHITECTS**

CONSULTANT

PROJECT		
GRUENING	MIDDLE	SCHOOL

EAGLE RIVER, ALASKA

TITLE HISTORICAL AIRPHOTO - APRIL 30, 1982

	YYYY-MM-DD	2019-02-06
	DESIGNED	-
DER	PREPARED	APG
	REVIEWED	BBS
	APPROVED	-

PROJECT NO.	CONTROL	
19116560		

FIGURE

3

REV.

А

REFERENCE(S)

AIRPHOTO DATED JUNE 1, 1982 WAS ACQUIRED AND PROVIDED BY QUANTUM SPATIAL, ANCHORAGE ALASKA. COPYRIGHTED

CLIENT **BDS ARCHITECTS**

CONSULTANT

PROJECT
GRUENING MIDDLE SCHOOL

EAGLE RIVER, ALASKA

TITLE ISTORICAL AIRPHOTO - JUNE 1 1982

YYYY-MM-DD	2019-02-06	TIT
DESIGNED	-	— н
PREPARED	APG	
REVIEWED	BBS	PR
APPROVED	-	

OJECT NO. CONTROL 9116560

FIGURE

4

REV.

А

REFERENCE(S) AIRPHOTO DATED JUNE 24, 1982 WAS ACQUIRED AND PROVIDED BY QUANTUM SPATIAL, ANCHORAGE ALASKA. COPYRIGHTED

CLIENT

CONSULTANT

BDS ARCHITECTS

INOJECI		
GRUENIN	G MIDDLE	SCHOOL

EAGLE RIVER, ALASKA

TITLE

HISTORICAL AIRPHOTO - JUNE 24 1982

F

DER	YYYY-MM-DD	2019-02-06
	DESIGNED	-
	PREPARED	APG
	REVIEWED	BBS
	APPROVED	-

PROJECT NO. CONTROL REV. 19116560 А

FIGURE

5

REFERENCE(S)

1. ORTHOIMAGERY ACQUIRED IN MAY 2015 BY THE ANCHORAGE LIDAR AND IMAGERY PROJECT AND WAS DISTRIBUTED BY ALASKA DIVISION OF GEOLOGICAL AND GEOPHYSICAL SURVEYS (DGGS) ONLINE MAP.

CLIENT **BDS ARCHITECTS**

CONSULTANT YYYY-MM-DD 2019-02-06 DESIGNED -PREPARED REVIEWED 🕓 GOLDER APG BBS

APPROVED

-

PROJECT **GRUENING MIDDLE SCHOOL**

EAGLE RIVER, ALASKA

TITLE

HISTORICAL AIRPHOTO - MAY 2015

PROJECT NO.	CONTROL	REV.
19116560		А

FIGURE

6

REFERENCE(S)

HILLSHADE IMAGE DEVELOPED FROM GROUND POINT DATA DERIVED FROM LIDAR POINT CLOUD DATA ACQUIRED BY KODIAK MAPPING INC. ON 2018-12-18. LIDAR DATA WAS DISTRIBUTED AS PART OF 2018 EARTHQUAKE-QL2 PHASE 01 DELIVERY AND IS INTENDED TO PROVIDE GENERALIZED SURFACE INFORMATION SUITABLE FOR INITIAL RESPONSE AND ASSESSMENT EFFORTS.

CLIENT **BDS ARCHITECTS**

CONSULTANT YYYY-MM-DD 2019-02-06 DESIGNED -GOLDER PREPARED REVIEWED APG BBS APPROVED -

PROJECT **GRUENING MIDDLE SCHOOL**

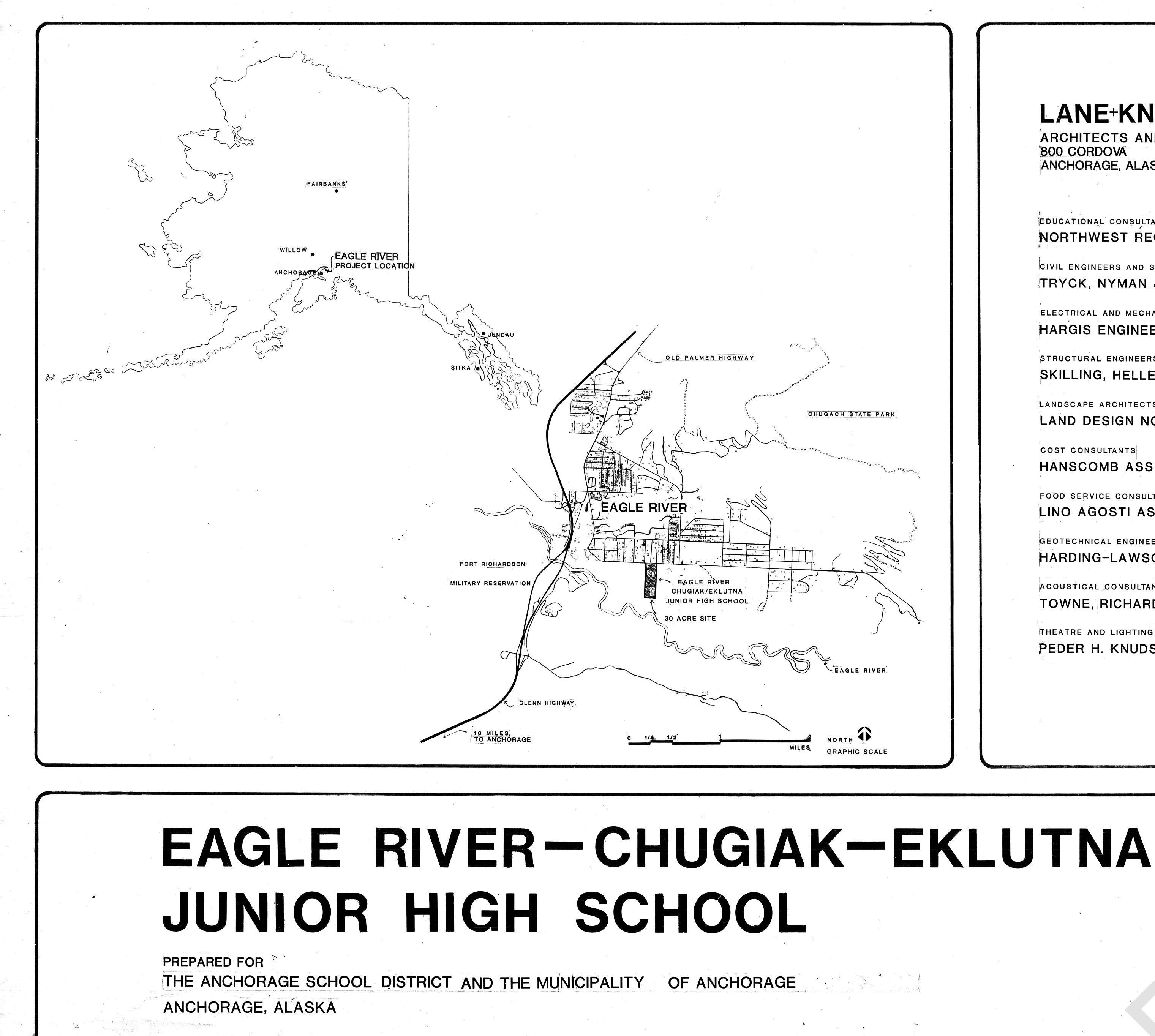
EAGLE RIVER, ALASKA

TITLE

HILLSHADE IMAGE - 2018 LIDAR

PROJECT NO. CONTROL 19116560

7


REV.

А

APPENDIX A

Select Historical Documents

LANE+KNORR+PLUNKETT

ARCHITECTS AND PLANNERS 800 CORDOVA ANCHORAGE, ALASKA 99501

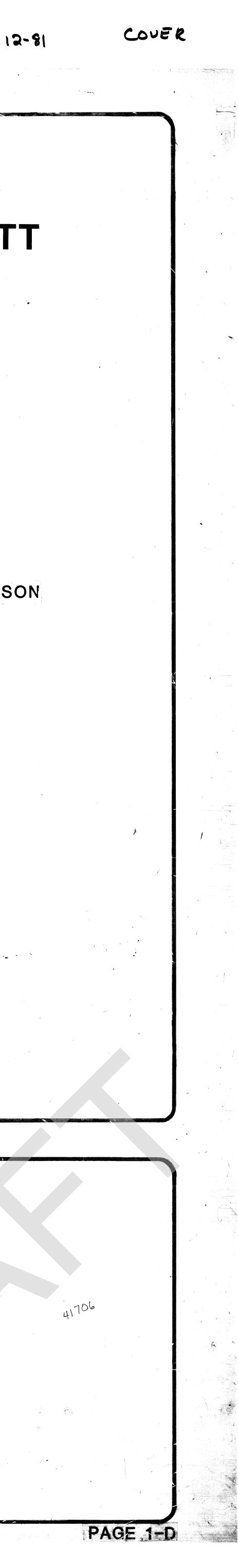
EDUCATIONAL CONSULTANTS NORTHWEST REGIONAL LABORATORIES

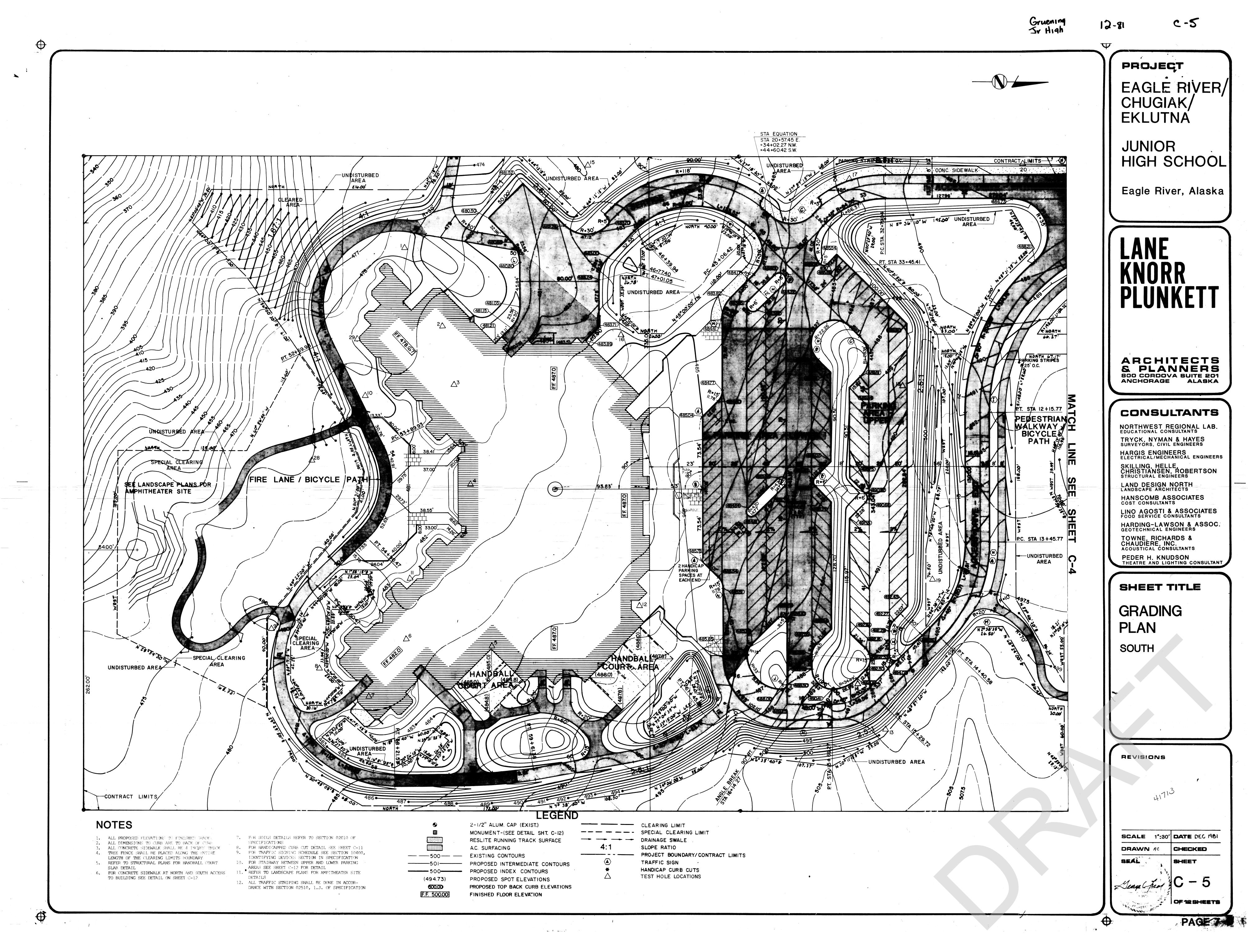
CIVIL ENGINEERS AND SURVEYORS TRYCK, NYMAN & HAYES

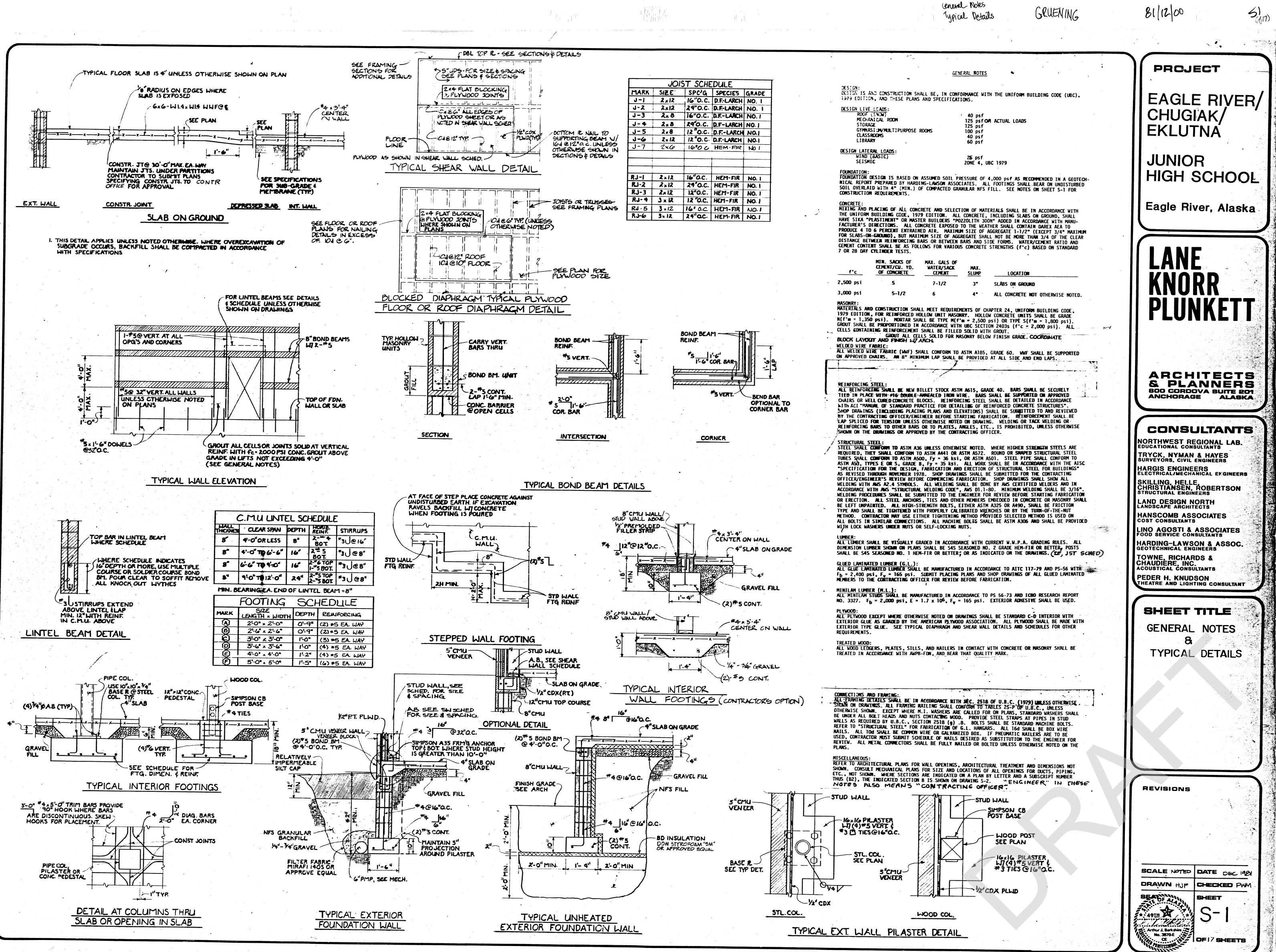
ELECTRICAL AND MECHANICAL ENGINÈERS HARGIS ENGINEERS

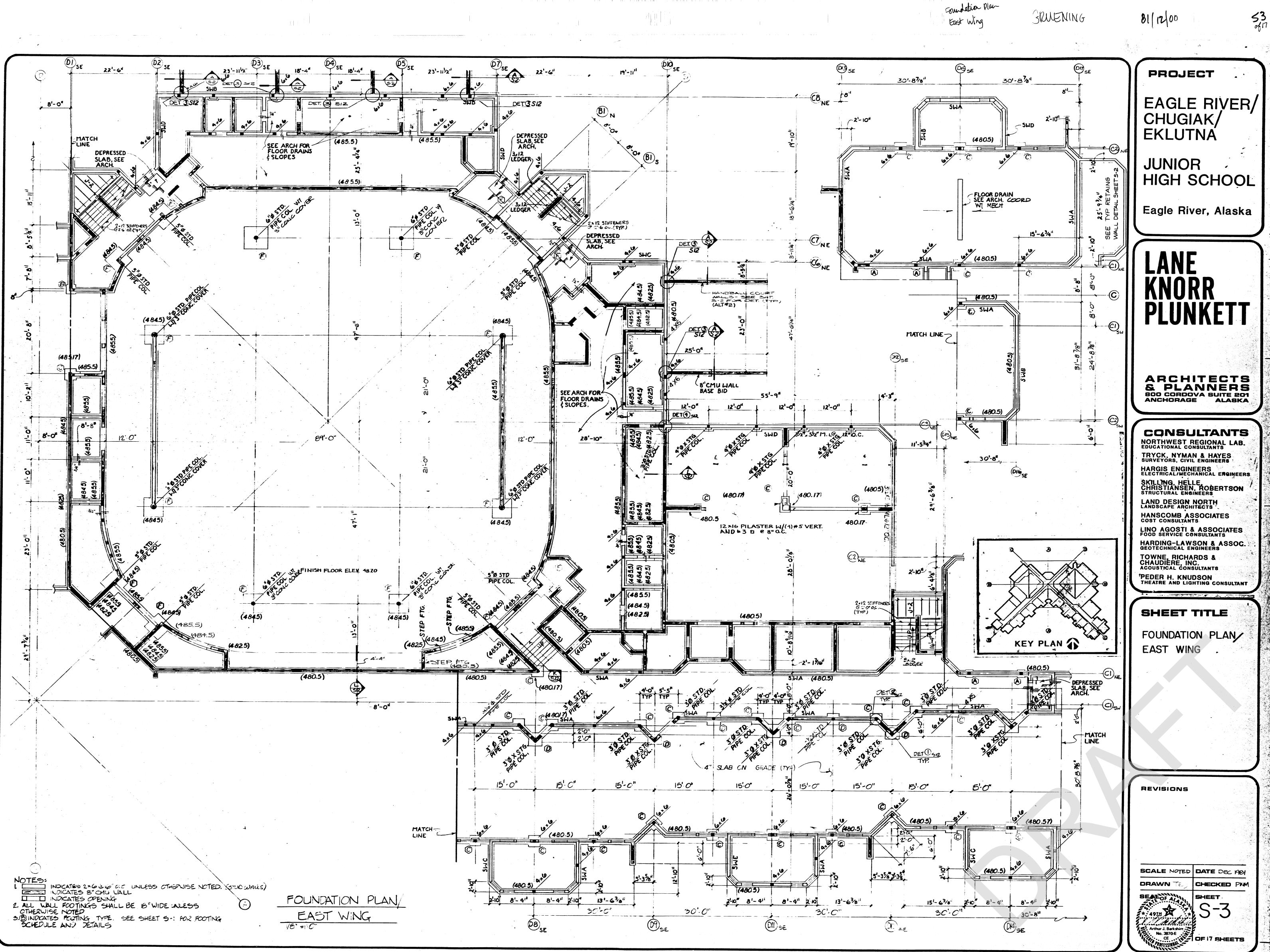
STRUCTURAL ENGINEERS SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

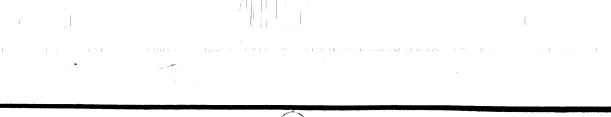
LANDSCAPE ARCHITECTS LAND DESIGN NORTH

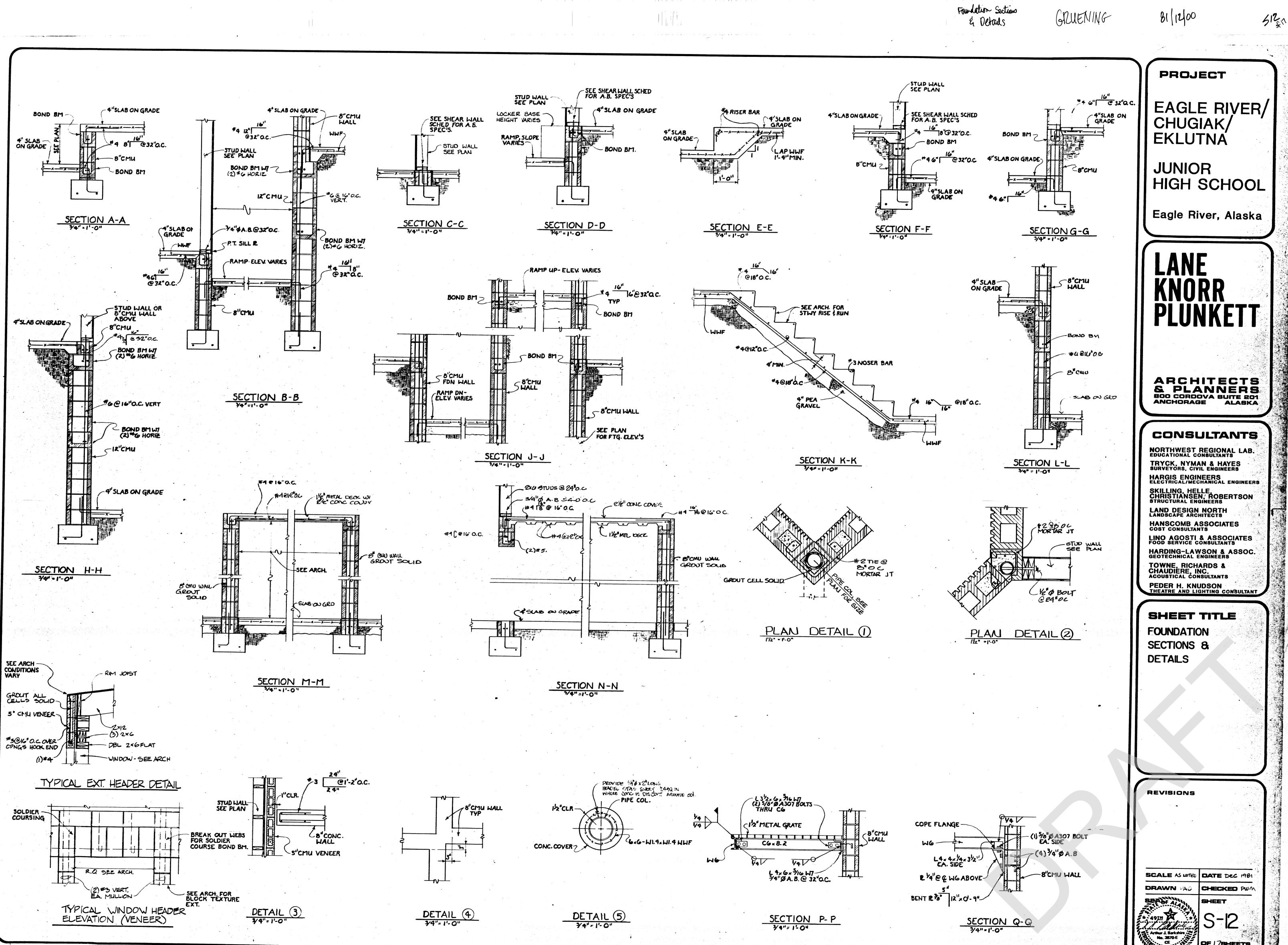

COST CONSULTANTS HANSCOMB ASSOCIATES


FOOD SERVICE CONSULTANTS LINO AGOSTI ASSOCIATES


GEOTECHNICAL ENGINEERS HARDING-LAWSON & ASSOCIATES


ACOUSTICAL CONSULTANTS TOWNE, RICHARDS & CHAUDIERE, INC.


THEATRE AND LIGHTING CONSULTANT PEDER H. KNUDSON



-

OF /78HEETS

APPENDIX B

Proposal for Geotechnical Investigation

February 8, 2019

Proposal No. P19116560

Ray Amsden BDS Architects 3330 C Street, Suite 200 Anchorage, AK 99503

PROPOSAL FOR GEOTECHNICAL EVALUATION OF GRUENING MIDDLE SCHOOL FOUNDATIONS EARTHQUAKE DAMAGE, EAGLE RIVER, ALASKA

Dear Ray:

Golder Associates Inc. (Golder) is pleased to provide this proposal for geotechnical investigation of foundation and floor slab damage at Gruening Middle School in Eagle River, Alaska that resulted from the November 30, 2018 earthquake. The proposal has been developed based on a site visit with you on January 24, 2019 and subsequent review of data provided by BDS. During the site visit we observed movement and cracking in walls around the school, but our primary focus was to observe interior and exterior damage in the gymnasium area and an adjoining stairwell.

1.0 SCOPE OF WORK

We have arranged the scope of work into three tasks covering the site investigation, laboratory testing, and geotechnical engineering analysis and recommendations. We will arrange for utility locates through the Alaska Digline and will work with Anchorage School District Staff to identify utility conflicts using as-built records. We will prepare a health and safety plan for this project, and information regarding specific hazards is welcome.

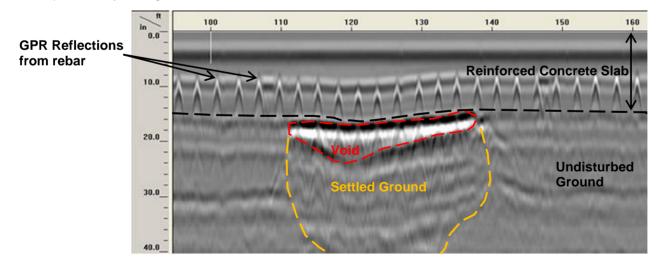
2.0 SITE INVESTIGATION

In order to assess geotechnical conditions in the gymnasium and stairwell area we recommend conducting a multi-phase geotechnical site investigation consisting of the following elements:

- **Ground penetrating radar (GPR) survey**. The gymnasium floor and surrounding track was identified as having potential settlement. Therefore, a GPR survey is recommended in order to identify and map potential voids beneath the gymnasium floor and changes in thickness of the slab.
- Boreholes and DCP in gymnasium area. Based on the results of the GPR survey, we will identify proposed borehole locations inside the gymnasium. The boreholes will be conducted in combination with dynamic cone penetration (DCP) testing in order to determine the density of the fill beneath the floor slab. In addition, DCP may be conducted at other locations to compare differences in soil density between areas with and without potential voids.

T: +1 907 344-6001 F: +1 907 344-6011

Exterior Test Pits and Boreholes. Additional boreholes and test pits will be advanced along the east and north sides of the school to further understand the site conditions and how those conditions may vary from interior areas where there is concern about settlement of mezzanine columns. Test pits are proposed adjacent to the stairwell in order to provide a detailed view of the soil condition immediately beneath the footings.


2.1 Ground Penetrating Radar

The GPR method uses electromagnetic (radar) pulses that are directed into the ground from an antenna. Reflections of these pulses from subsurface features are produced where there is a contrast between the electrical properties of subsurface objects, such as utilities, and the surrounding soil.

The proposed GPR investigation for the project consists of the following:

- Mobilizing one field geophysicist and helper, one complete cart-based GPR system, and one EMUL (electromagnetic utility locator) to site.
- Collecting GPR data in the gymnasium with a grid pattern
- Processing and interpreting collected data.

Based on our geotechnical experience in the area, we understand the shallow subsurface soils largely consist of glacial till, which both allow for acceptable GPR signal penetration and should provide a sharp contrast between the concrete slab and subgrade, as seen in the figure below. We will optimize GPR system settings to be able to image the subsurface below the slab and identify any air-filled gaps or other anomalies between the concrete slab and subgrade. The EMUL may be used to supplement the GPR to identify any buried utilities (particularly power) prior to any drilling activities.

Example Radargram of a Void and Associated Ground Settlement below a Concrete Slab.

The areas of interest will be broken into local grids and identified on a floor plan for gymnasium. The location of anomalies that suggest the presence of soil voids will be noted in real-time by our geophysicist and anomalous locations will be marked on the floor and mapped by swing ties with a fiberglass measuring tape relative to local features such as room corners or doorways. Field sketches will be generated to document these locations as

targets for potential drilling and follow-up survey effort. A senior geophysicist will also review the radargrams obtained to identify any additional anomalies or features not identified in the field and to confirm the real-time interpretations of voids.

Identified voids will be checked by drilling a small hole through the slab and inserting a downhole camera to inspect the suspected void. These locations will be marked and covered.

2.2 Limitations of Geophysical Methods

Golder's services will be conducted in a manner consistent with that level of care and skill ordinarily exercised by other members of the geophysical community currently practicing under similar conditions subject to the time limits, and financial and physical constraints applicable to the services. GPR and video inspection are remote sensing geophysical methods that may not detect all subsurface voids or utilities. Furthermore, discrete objects such as miscellaneous debris or cobbles and boulders may produce anomalies that are misinterpreted as utilities or subsurface features of concern.

2.3 Geotechnical Drilling

We propose advancing 4 boreholes inside the gymnasium and 6 boreholes around the exterior perimeter of the school. The boreholes will be advanced to 20 feet below ground surface using a low-profile rubber tracked drill rig. The drill rig is approximately 4.5 feet wide by 10 feet long and can fit through double man doors to operate inside the school. Borehole locations as drilled will be determined by measuring relative to site features such as the building corners or doorways as well as with a handheld GPS. If soft or organic material is encountered, additional drilling may be advised. If contaminated soils are observed, drilling will stop and BDS will be notified immediately.

Samples will be obtained using a 3-inch outside diameter split-barrel sampler advanced using a drop hammer. Disturbed, but representative soil samples will be attempted at continuous intervals to 10 feet and then at nominal five-foot intervals to total depth or as directed by our field personnel. Recovered soil samples will be visually classified in the field according to the Unified Soil Classification System (USCS) field method.

For the drilling inside the school, rubber matting will be placed to protect the floor during drilling. An approximate inch diameter hole will be cored through the gymnasium floor before advancing a hand-operated dynamic cone penetrometer (DCP) up to 24-inches below the slab subgrade. After completion of the DCP, the borehole will then be advanced, and samples will be collected continuously using hollow-stem auger methods with spilt-barrel samplers.

Standpipe piezometers consisting of machine slotted PVC casings will be installed in the exterior boreholes to allow for measurement of water levels.

Equipment exhaust will be vented outside during drilling operations. At the completion of drilling inside the school, the boreholes will be backfilled with a cement grout. We have assumed that Anchorage School District maintenance staff will patch the concrete slab and repair the gym floor.

Boreholes advanced outside the school with be backfilled with soil cuttings that are tamped as backfill is added.

2.4 Test Pit Excavation

We propose advancing two test pits along the east side of the school at Stairwell SW2 using equipment owned and operated by BC Excavating. The test pits will extend perpendicular from the exterior wall footing up to as

much as 15 feet from the footing, depending on conditions observed in the field. The trench will extend to the bottom of the fill layer or up to 10 feet below ground surface.

We have assumed that snow clearing, and ground thawing will be required to advance the test pits. Ground thawing requires access to two electrical circuits rated to 20 amps and will take 5 to 7 days. After excavation and soil logging, the test pits will be backfilled and compacted. We have assumed that any additional compaction, revegetation, or surface improvements will be performed by others.

3.0 LABORATORY TESTING

Select soil samples will be submitted to our Anchorage laboratory for testing. Most of the samples will be tested to determine moisture content. We have assumed that ten sieve analyses and two Atterberg analyses may also be completed to verify field classification.

4.0 GEOTECHNICAL RECOMMENDATIONS REPORT

Golder will summarize the result of the investigation and observed subsurface conditions in a written report that includes the following.

- Summary of subsurface soil conditions
- Borehole and test pit logs
- Summary of laboratory test results
- Discussion of the GPR survey and results
- Summary map of subsurface anomalies in interior and exterior areas
- Identification of geotechnical issues and discussion of mitigation concepts

APPENDIX B

SUBSURFACE EXPLORATIONS

- 1 Soil Description and Log Key
- 2 Frost Classification Legend
- 3 Log of Boring B-01
- 4 Log of Boring B-02
- 5 Log of Boring B-03
- 6 Log of Boring B-04
- 7 Log of Boring B-05
- 8 Log of Boring B-06
- 9 Log of Boring B-07
- 10 Log of Boring B-08
- 11 Log of Boring B-09
- 12 Log of Boring B-10
- 13 Log of Test Pit TP-1
- 14 Log of Test Pit TP-2
- 15 DCP Profile of Boring B-07 (2 Sheets)
- 16 DCP Profile of Boring B-08 (2 Sheets)
- 17 DCP Profile of Boring B-09 (2 Sheets)
- 18 DCP Profile of Boring B-10 (2 Sheets)
- 19 DCP Profile of Test Hole TH-1 (3 Sheets)
- 20 DCP Profile of Test Hole TH-2 (2 Sheets)
- 21 DCP Profile of Test Hole TH-3
- 22 DCP Profile of Test Hole TH-4 (2 Sheets)
- 23 Grain Size Classification (7 Sheets)
- 24 Atterberg Limits

Shannon & Wilson, Inc. (S&W), uses a soil identification system modified from the Unified Soil Classification System (USCS). Elements of the USCS and other definitions are provided on this and the following pages. Soil descriptions are based on visual-manual procedures (ASTM D2488) and laboratory testing procedures (ASTM D2487), if performed.

S&W INORGANIC SOIL CONSTITUENT DEFINITIONS

CONSTITUENT ²	FINE-GRAINED SOILS (50% or more fines) ¹	COARSE-GRAINED SOILS (less than 50% fines) ¹			
Major	Silt, Lean Clay, Elastic Silt, or Fat Clay ³	Sand or Gravel ⁴			
Modifying (Secondary) Precedes major constituent	30% or more coarse-grained: Sandy or Gravelly ⁴	More than 12% fine-grained: Silty or Clayey ³			
Minor	15% to 30% coarse-grained: <i>with Sand</i> or <i>with Gravel</i> ⁴	5% to 12% fine-grained: <i>with Silt</i> or <i>with Clay</i> ³			
Follows major constituent	30% or more total coarse-grained <i>and</i> lesser coarse- grained constituent is 15% or more: <i>with Sand</i> or <i>with Gravel</i> ⁵	15% or more of a second coarse- grained constituent: <i>with Sand</i> or <i>with Gravel</i> ⁵			
¹ All percentages are by weight of total specimen passing a 3-inch sieve. ² The order of terms is: <i>Modifying Major with Minor</i> . ³ Determined based on behavior					

Determined based on behavior.

⁴Determined based on which constituent comprises a larger percentage. ⁵Whichever is the lesser constituent.

MOISTURE CONTENT TERMS

Dry	Absence of moisture, dusty, dry to the touch

Moist Damp but no visible water

Wet Visible free water, from below water table

STANDARD PENETRATION TEST (SPT) SPECIFICATIONS

Hammer:	140 pounds with a 30-inch free fall. Rope on 6- to 10-inch-diam. cathead 2-1/4 rope turns, > 100 rpm
	NOTE: If automatic hammers are used, blow counts shown on boring logs should be adjusted to account for efficiency of hammer.
Sampler:	10 to 30 inches long Shoe I.D. = 1.375 inches Barrel I.D. = 1.5 inches Barrel O.D. = 2 inches
N-Value:	Sum blow counts for second and third 6-inch increments. Refusal: 50 blows for 6 inches or less; 10 blows for 0 inches.
bori hav	etration resistances (N-values) shown on ng logs are as recorded in the field and e not been corrected for hammer siency, overburden, or other factors.
	Sampler: N-Value: <i>NOTE: Pen</i> bori hav

PARTICLE SIZE DEFINITIONS				
DESCRIPTION	SIEVE NUMBER AND/OR APPROXIMATE SIZE			
FINES	< #200 (0.075 mm = 0.003 in.)			
SAND Fine Medium Coarse	#200 to #40 (0.075 to 0.4 mm; 0.003 to 0.02 in.) #40 to #10 (0.4 to 2 mm; 0.02 to 0.08 in.) #10 to #4 (2 to 4.75 mm; 0.08 to 0.187 in.)			
GRAVEL Fine Coarse	#4 to 3/4 in. (4.75 to 19 mm; 0.187 to 0.75 in.) 3/4 to 3 in. (19 to 76 mm)			
COBBLES	3 to 12 in. (76 to 305 mm)			
BOULDERS	> 12 in. (305 mm)			

RELATIVE DENSITY / CONSISTENCY

COHESIONLESS SOILS		COHES	SIVE SOILS
N, SPT, <u>BLOWS/FT.</u>	RELATIVE DENSITY	N, SPT, <u>BLOWS/FT.</u>	RELATIVE CONSISTENCY
< 4	Very loose	< 2	Very soft
4 - 10	Loose	2 - 4	Soft
10 - 30	Medium dense	4 - 8	Medium stiff
30 - 50	Dense	8 - 15	Stiff
> 50	Very dense	15 - 30	Very stiff
		> 30	Hard

WELL AND BACKFILL SYMBOLS

Bentonite Cement Grout	Surface Cement Seal	
Bentonite Grout	Asphalt or Cap	
Bentonite Chips	Slough	
Silica Sand	Inclinometer or Non-perforated Casing	
Perforated or Screened Casing	Vibrating Wire Piezometer	

PERCENTAGES TERMS^{1, 2}

Trace	< 5%
Few	5 to 10%
Little	15 to 25%
Some	30 to 45%
Mostly	50 to 100%

¹Gravel, sand, and fines estimated by mass. Other constituents, such as organics, cobbles, and boulders, estimated by volume.

²Reprinted, with permission, from ASTM D2488 - 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

> Gruening Middle School Earthquake Repairs Eagle River, Alaska

SOIL DESCRIPTION AND LOG KEY

August 2019

103327-001

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants FIG. B-1 Sheet 1 of 3

	MAJOR DIVISIONS		GROUP/ SYN	GRAPHIC IBOL	TYPICAL IDENTIFICATIONS	
		Gravel	GW		Well-Graded Gravel; Well-Graded Gravel with Sand	
	Gravels (more than 50%	(less than 5% fines)	GP		Poorly Graded Gravel; Poorly Graded Gravel with Sand	
	of coarse fraction retained on No. 4 sieve)	Silty or Clayey Gravel	GM		Silty Gravel; Silty Gravel with Sand	
COARSE- GRAINED SOILS		(more than 12% fines)	GC		Clayey Gravel; Clayey Gravel with San	
(more than 50% retained on No. 200 sieve)		Sand	sw		Well-Graded Sand; Well-Graded Sand with Gravel	
	Sands (50% or more of coarse fraction passes the No. 4 sieve)	(less than 5% fines)	SP		Poorly Graded Sand; Poorly Graded Sand with Gravel	
		Silty or Clayey Sand (more than 12% fines)	SM		Silty Sand; Silty Sand with Gravel	
			SC		Clayey Sand; Clayey Sand with Grave	
FINE-GRAINED SOILS (50% or more basses the No. 200 sieve)	Silts and Clays (liquid limit less than 50)	Inorganic	ML		Silt; Silt with Sand or Gravel; Sandy or Gravelly Silt	
			CL		Lean Clay; Lean Clay with Sand or Gravel; Sandy or Gravelly Lean Clay	
		Organic	OL		Organic Silt or Clay; Organic Silt or Cla with Sand or Gravel; Sandy or Gravelly Organic Silt or Clay	
	Silts and Clays (liquid limit 50 or more)		мн		Elastic Silt; Elastic Silt with Sand or Gravel; Sandy or Gravelly Elastic Silt	
		Inorganic	СН		Fat Clay; Fat Clay with Sand or Grave Sandy or Gravelly Fat Clay	
		Organic	он		Organic Silt or Clay; Organic Silt or Cl with Sand or Gravel; Sandy or Gravel Organic Silt or Clay	
HIGHLY- ORGANIC SOILS	Primarily organic matter, dark in color, and organic odor		PT		Peat or other highly organic soils (see ASTM D4427)	

NOTE: No. 4 size = 4.75 mm = 0.187 in.; No. 200 size = 0.075 mm = 0.003 in.

NOTES

1. Dual symbols (symbols separated by a hyphen, i.e., SP-SM, Sand with Silt) are used for soils with between 5% and 12% fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart. Graphics shown on the logs for these soil types are a combination of the two graphic symbols (e.g., SP and SM).

2. Borderline symbols (symbols separated by a slash, i.e., CL/ML, Lean Clay to Silt; SP-SM/SM, Sand with Silt to Silty Sand) indicate that the soil properties are close to the defining boundary between two groups. Gruening Middle School Earthquake Repairs Eagle River, Alaska

SOIL DESCRIPTION AND LOG KEY

August 2019

103327-001

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. B-1 Sheet 2 of 3

Poorly Gra	ded	GRADATION TERMS Narrow range of grain sizes				
·		within the range of grain size one or more sizes are missin Graded). Meets criteria in A	s pres g (Ga	ent,		
Well-Gra	ded	D2487, if tested. Full range and even distribut sizes present. Meets criteria D2487, if tested.	ion of q in AS	grain TM		
	C	EMENTATION TERMS ¹			_	Ιн
Weak		crumbles or breaks with handli	ng or			1
Moderate	C fi	light finger pressure Crumbles or breaks with consid nger pressure		9		
Strong		Vill not crumble or break with t ressure	inger			N
		PLASTICITY ²			7	
			PLAS INI	ROX.	Y	
DESCRIPTION Nonplastic	A 1	SUAL-MANUAL CRITERIA /8-in. thread cannot be rolled a		NGE < 4	-	
Low	A th	water content. Tread can barely be rolled and p cannot be formed when drie		o 10		
Medium	A tł	h the plastic limit. hread is easy to roll and not ch time is required to reach the		to 20		F
	rero	stic limit. The thread cannot b bled after reaching the plastic t. A lump crumbles when drie				F
High	tha It ta kne	n the plastic limit. ke considerable time rolling ar ading to reach the plastic limit	nd >	20		: US
	tim limi with	nread can be rerolled several es after reaching the plastic t. A lump can be formed nout crumbling when drier thar plastic limit.	1			
	AD	DITIONAL TERMS				N
Mottled	Irre	gular patches of different colo	S.]		N
Bioturbated		l disturbance or mixing by plar nals.	ts or		Interh	
Diamict	Noi in s	nsorted sediment; sand and gr ilt and/or clay matrix.	avel			ninated
Cuttings	Ma	terial brought to surface by dri	ling.		Fie	ssured
Slough		terial that caved from sides of ehole.			Slicke	
Sheared	Dis	turbed texture, mix of strength	s.		I	Blocky
PARTICLE	ANG	ULARITY AND SHAPE TER	ทร์	,		
Angular		arp edges and unpolished plan faces.	ar			ensed.
Subangular	Sin edg	nilar to angular, but with round les.	ed		Homoge	eneous
Subrounded	Nea edg	arly planar sides with well-rour les.	ded			Г
Rounded	Sm	oothly curved sides with no ec	lges.			
Flat	Wie	dth/thickness ratio > 3.				
Elongated	Ler	gth/width ratio > 3.				Γ
		n, from ASTM D2488 - 09a Standa	- Dura			

standard may be obtained from ASTM International, www.astm.org.

ACRONYMS AND ABBREVIATIONS

ATD	At Time of Drilling
Diam.	Diameter
Elev.	Elevation
ft.	Feet
FeO	Iron Oxide
gal.	Gallons
Horiz.	Horizontal
HSA	Hollow Stem Auger
I.D.	Inside Diameter
in.	Inches
lbs.	Pounds
MgO	Magnesium Oxide
mm	Millimeter
MnO	Manganese Oxide
NA	Not Applicable or Not Available
NP	Nonplastic
O.D.	Outside Diameter
OW	Observation Well
pcf	Pounds per Cubic Foot
PID	Photo-Ionization Detector
PMT	Pressuremeter Test
ppm	Parts per Million
psi	Pounds per Square Inch
PVC	Polyvinyl Chloride
rpm	Rotations per Minute
SPT	Standard Penetration Test
USCS	Unified Soil Classification System
\mathbf{q}_{u}	Unconfined Compressive Strength
VWP	Vibrating Wire Piezometer
Vert.	Vertical
WOH	Weight of Hammer
WOR	Weight of Rods
Wt.	Weight
S	TRUCTURE TERMS ¹
ded Alte	rnating layers of varying material or color with
	rs at least 1/4-inch thick; singular: bed. rnating layers of varying material or color with

Interbedded	Alternating layers of varying material or color with layers at least 1/4-inch thick; singular: bed.
Laminated	Alternating layers of varying material or color with layers less than 1/4-inch thick; singular:
	lamination.
Fissured	Breaks along definite planes or fractures with little
	resistance.
Slickensided	Fracture planes appear polished or glossy; sometimes striated.
Pleaky	
Blocky	Cohesive soil that can be broken down into small angular lumps that resist further breakdown. Inclusion of small pockets of different soils, such
Lensed	as small lenses of sand scattered through a mass of clay.
	Same color and appearance throughout.

Gruening Middle School Earthquake Repairs Eagle River, Alaska

SOIL DESCRIPTION AND LOG KEY

August 2019

103327-001

FIG. B-1 Sheet 3 of 3

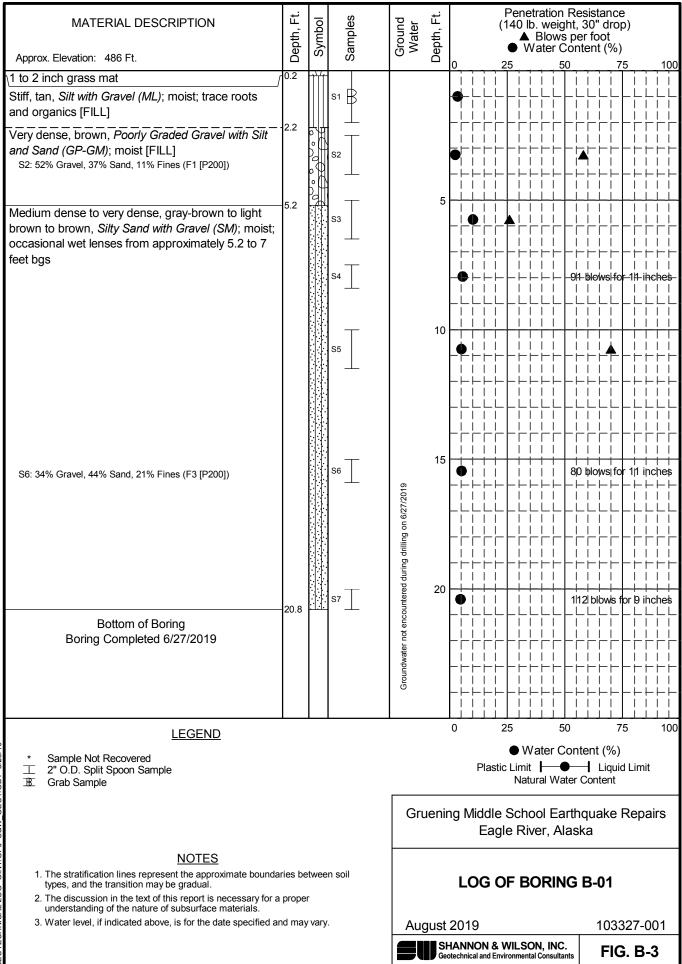
SHANNON & WILSON, INC.

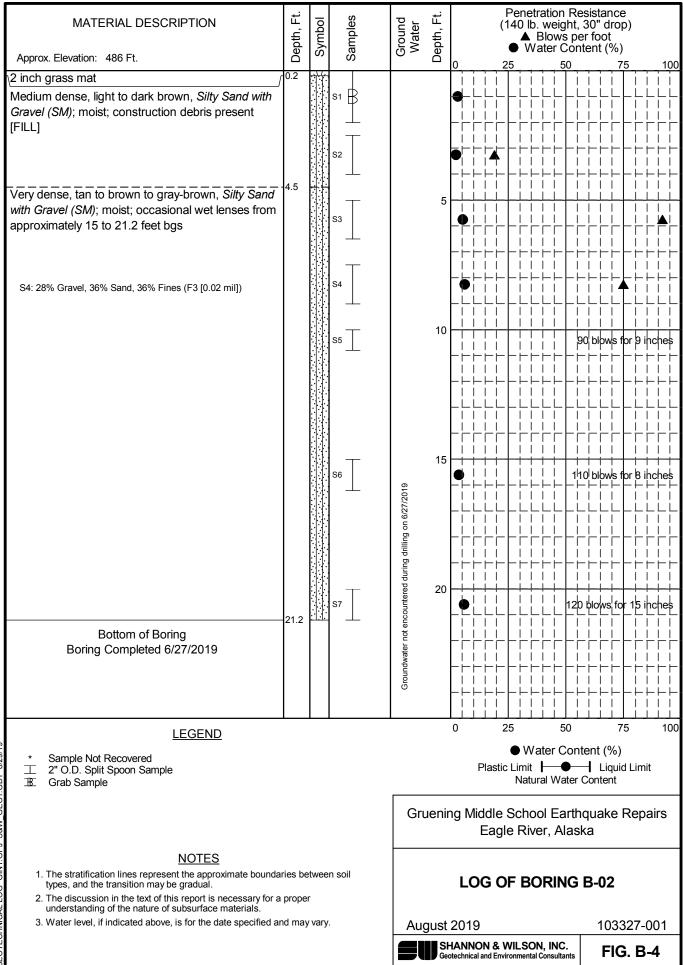
FROST CLASSIFICATION

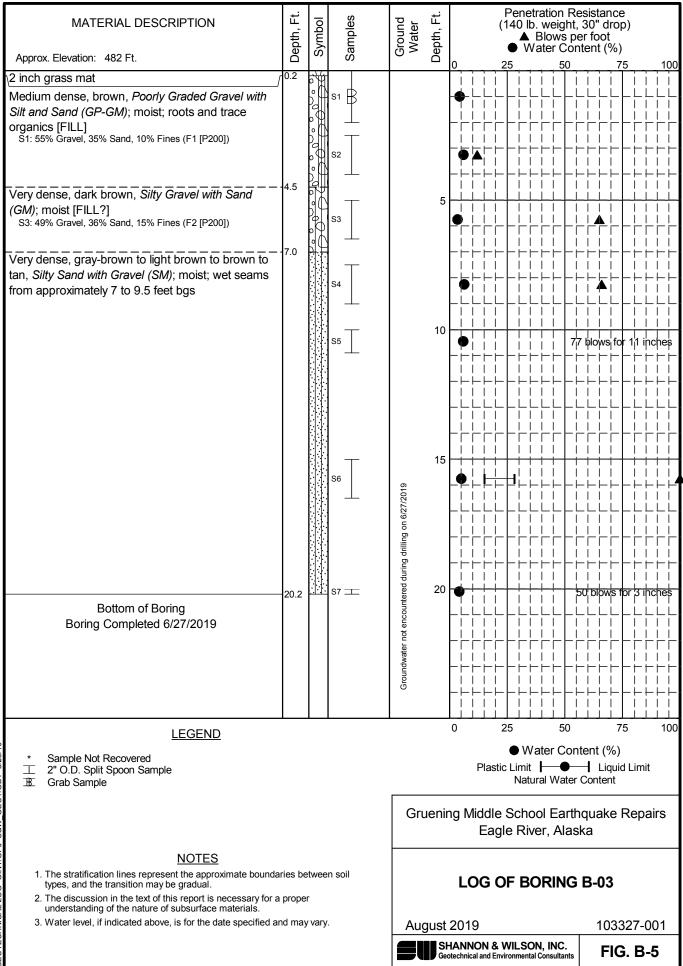
(after Municipality of Anchorage, 2007)

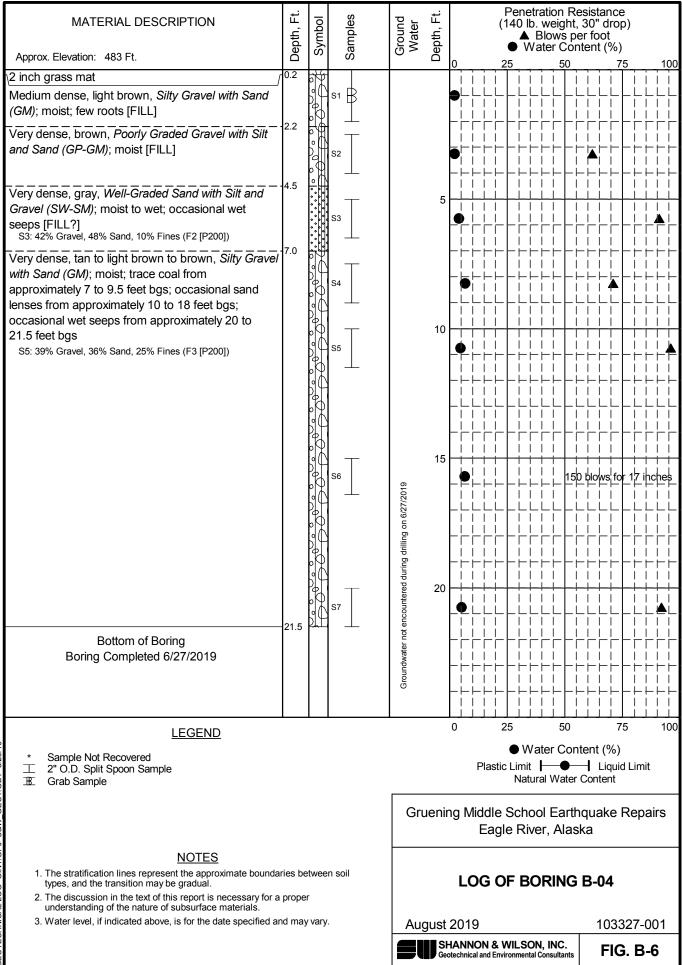
GROUP		0.02 Mil.	P-200*	USC SYSTEM (based on P-200 results)
	Sandy Soils	0 to 3	0 to 6	SW, SP, SW-SM, SP-SM
NFS	Gravelly Soils	0 to 3	0 to 6	GW, GP, GW-GM, GP-GM
F1	Gravelly Soils	3 to 10	6 to 13	GM, GW-GM, GP-GM
F2	Sandy Soils	3 to 15	6 to 19	SP-SM, SW-SM, SM
ΓZ	Gravelly Soils	10 to 20	13 to 25	GM
	Sands, except very fine silty sands**	Over 15	Over 19	SM, SC
F3	Gravelly Soils	Over 20	Over 25	GM, GC
	Clays, PI>12			CL, CH
	All Silts			ML, MH
	Very fine silty sands**	Over 15	Over 19	SM, SC
F4	Clays, PI<12			CL, CL-ML
	Varved clays and other fined grained, banded sediments			CL and ML CL, ML, and SM; SL, SH, and ML; CL, CH, ML, and SM

*Approximate P-200 value equivalent for frost classification. Gruer Value range based on typical, well-graded soil curves.

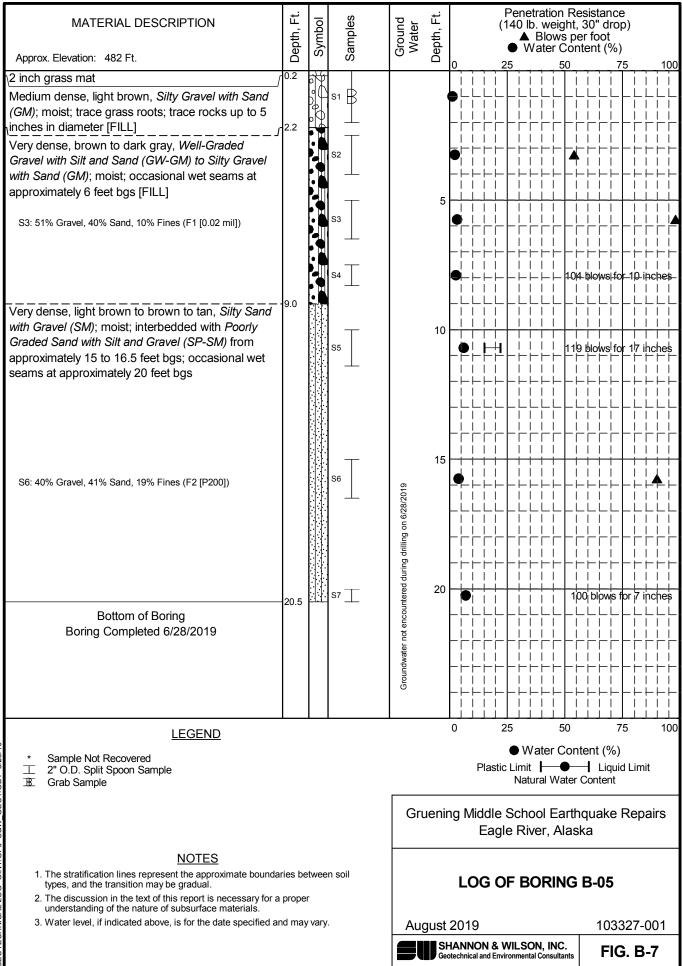

** Very fine sand : greater than 50% of sand fraction passing the number 100 sieve Gruening Middle School Earthquake Repairs Eagle River, Alaska

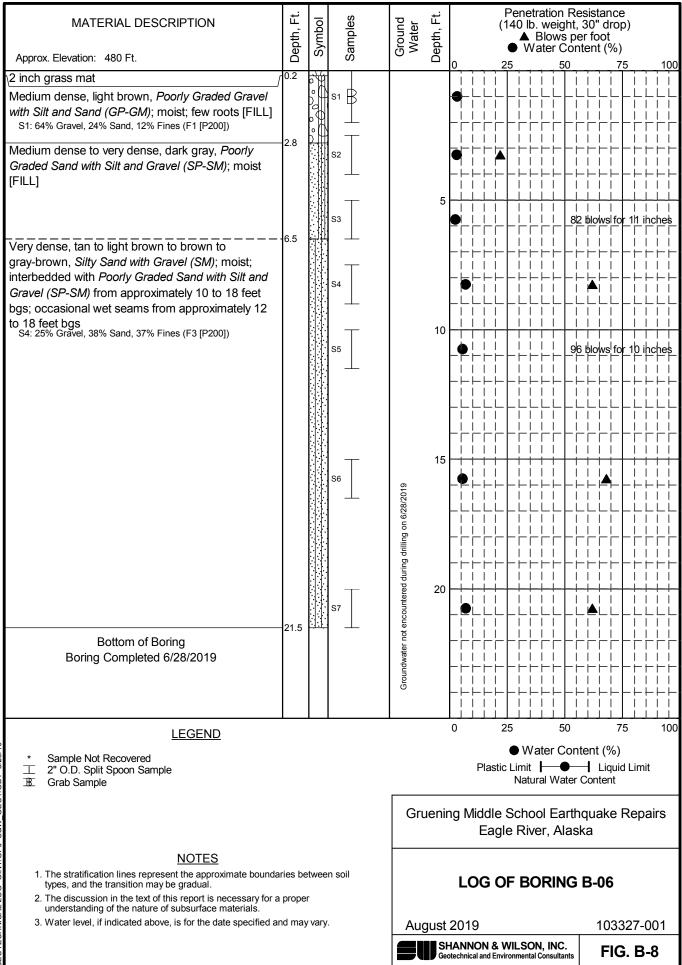

FROST CLASSIFICATION LEGEND

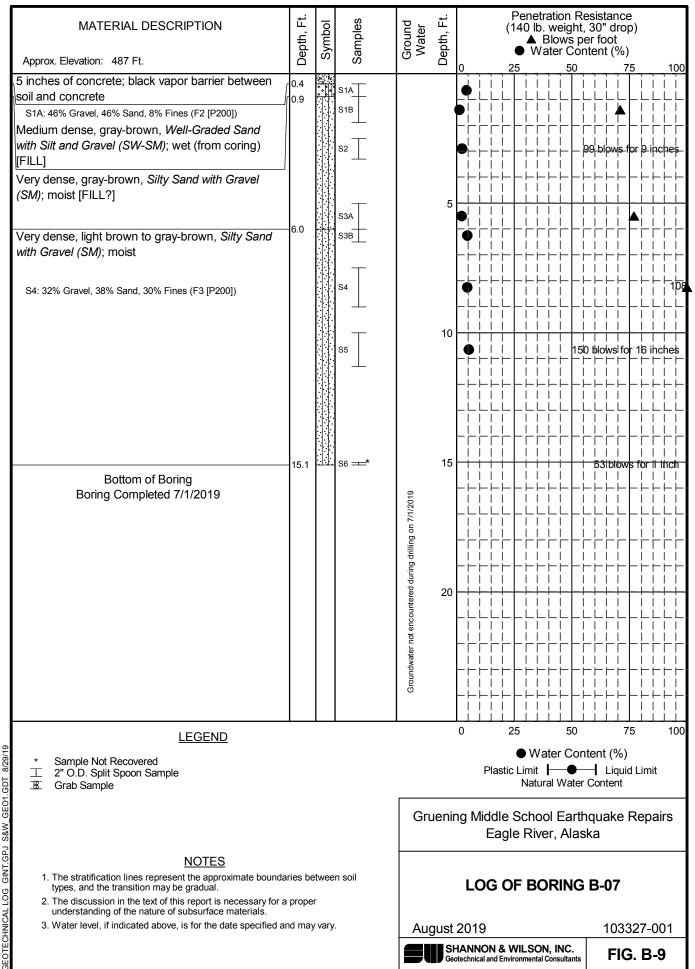

August 2019

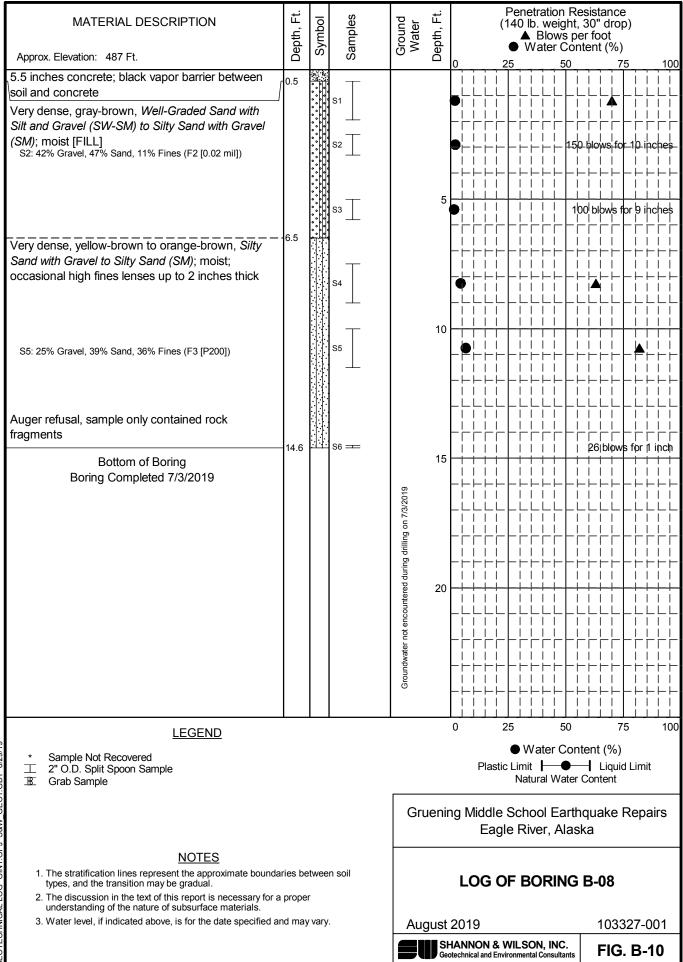

103327-001

SHANNON & WILSON, INC. Geotechnical & Environmental Consultants FIG. B-2

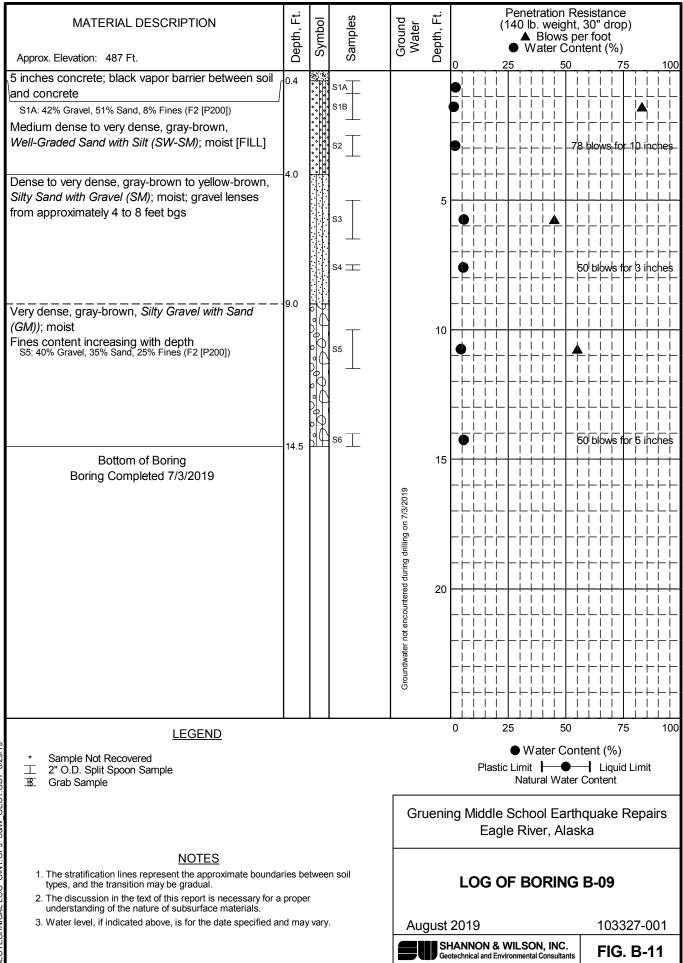


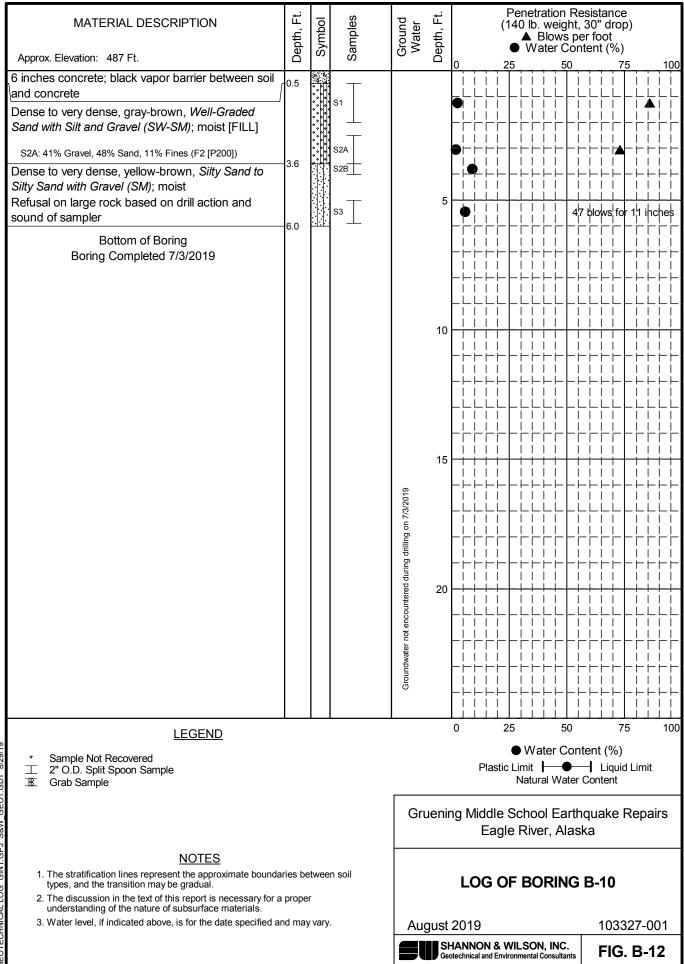


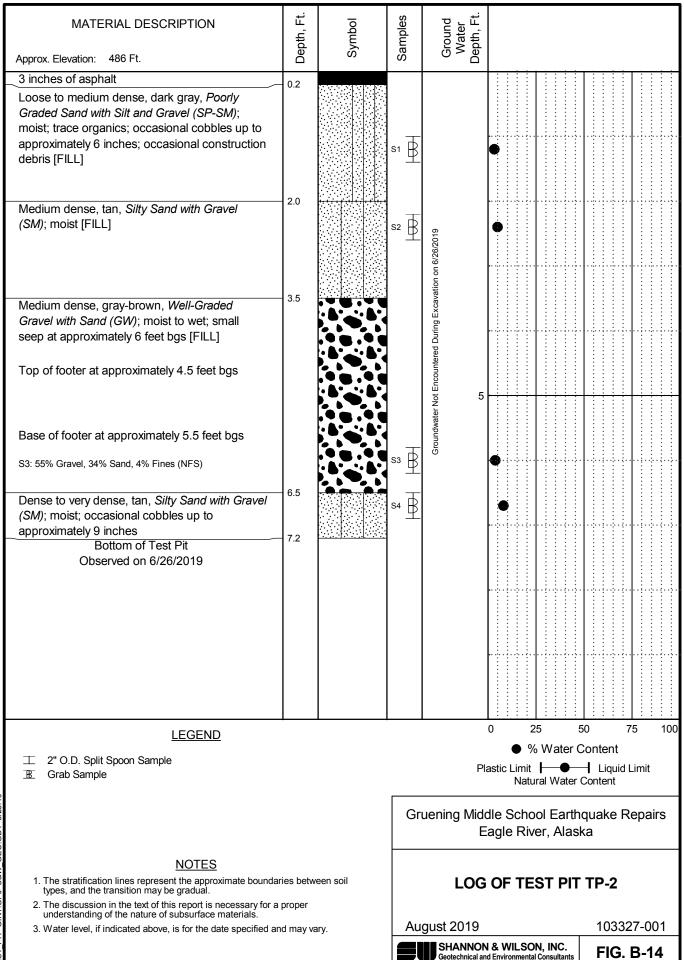

SEOTECHNICAL LOG GINT.GPJ S&W GEO1.GDT 8/29/19



SEOTECHNICAL LOG GINT.GPJ S&W GEO1.GDT 8/29/19

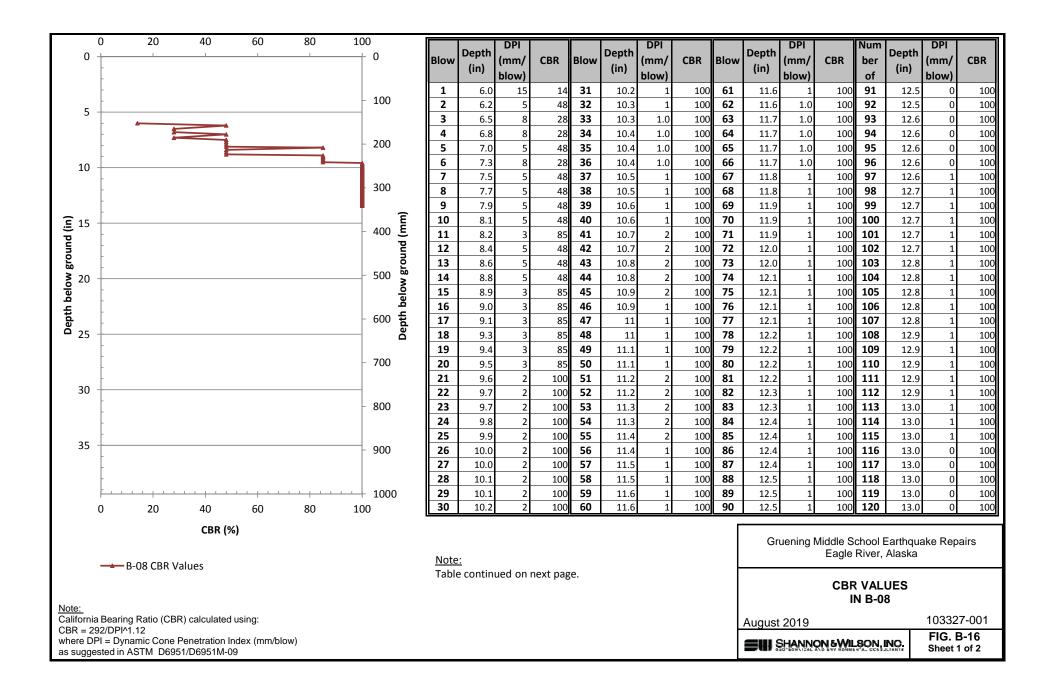



SEOTECHNICAL LOG GINT.GPJ S&W GEO1.GDT 8/29/19


SEOTECHNICAL LOG GINT.GPJ S&W_GEO1.GDT 8/29/19

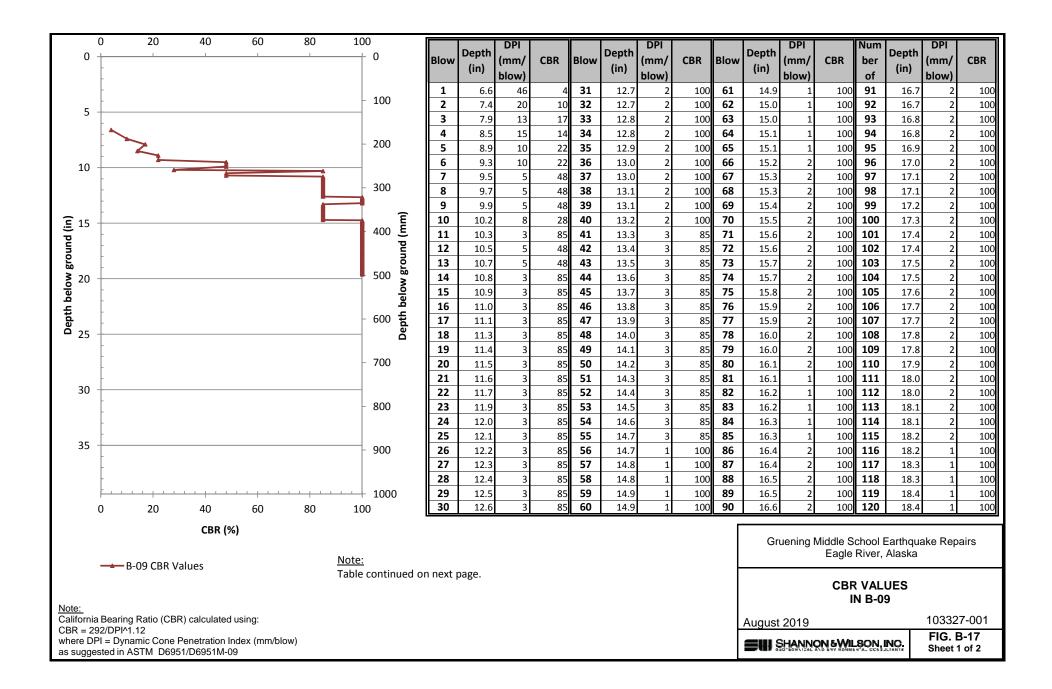
MATERIAL DESCRIPTION	ť	lo	les	er Ft.								
	Depth,	Symbol	Samples	Ground Water Depth, Ft.								
Approx. Elevation: 486 Ft.	ă		S	Ğ		: :		÷ – -			┯÷	
3 inch grass mat Medium dense, brown, <i>Poorly Graded Gravel</i>	0.2											
with Silt and Sand (GP-GM); moist; trace			Ŧ									
roots/organics [FILL]	1.0		s1 B		•							
Loose to medium dense, gray, Well-Graded	1.0		н									
Gravel with Silt and Sand (GW-GM); moist; occasional construction debris [FILL]			s₂ ₿		•							
				019								
				3/26/2								
				n on f								
				avatio								
			т	g Exc								
S3: 66% Gravel, 29% Sand, 6% Fines (F1 [0.02 mil])			s3 ₿	Durin								
Top of footor of conversionately 4.5 footbarr				Broundwater Not Encountered During Excavation on 6/26/2019 G								
Top of footer at approximately 4.5 feet bgs; approximately 8 to 12 inch wide "mushroom" of				Encou								
concrete at base of stem wall				er Not								
				dwate								
Estimated base of footer at approximately 5.5 feet bgs				Groun								
Dense to very dense, brown, Silty Sand with	6.0					• • • • • • • • •			••••••	· · · ·	•••••	
Gravel (SM); moist			s₄ ₿									
Bottom of Test Pit	6.8											
Observed on 6/26/2019					••••••••	• • • • • • • • •			• • • • •	> · {· :	••••••	
						• • • • • • • • • •				· · · ·		
LEGEND					0	25		50			75	100
⊥ 2" O.D. Split Spoon Sample				_		% W						
■ Grab Sample				Pla	astic Lir N	nit 📙 atural					Limi	t
2							_			-		
			Gr	uening Mido	lle Sc agle F			-		e R	epa	airs
					ayıe r		٦id	ərd				
NOTES					_							
 The stratification lines represent the approximate boundar types, and the transition may be gradual. 	ies betw	een soil		LOG	OF 1	ES1	P	ТТ	Ρ-′	1		
 The discussion in the text of this report is necessary for a understanding of the nature of subsurface materials. 	proper											
3. Water level, if indicated above, is for the date specified an	d may va	ary.	Au	gust 2019					10	332	27-0	001
NOTES 1. The stratification lines represent the approximate boundar types, and the transition may be gradual. 2. The discussion in the text of this report is necessary for a understanding of the nature of subsurface materials. 3. Water level, if indicated above, is for the date specified an				SHANNON Geotechnical and	& WIL Environm	SON, I ental Con	NC. sultants	\$	FI	G.	B -'	13

TEST PIT GINT.GPJ S&W GEO.GDT 8/29/19


EST_PIT GINT.GPJ S&W_GEO.GDT 8/29/19

		DD												DO		1		DO					
_	Depth	DPI			Depth	DPI			Depth	DPI			Depth	DPI			Depth	DPI			Depth	DPI	
Blow	(in)	(mm/	CBR	Blow	(in)	(mm/	CBR	Blow	(in)	(mm/	CBR	Blow	(in)	(mm/	CBR	Blow	(in)	(mm/	CBR	Blow	(in)	(mm/	CBR
	(,	blow)			(,	blow)			(,	blow)			(,	blow)			(,	blow)			(,	blow)	
121	11.9	0	100	151				181				211				241				271			
122	11.9	0	100	152				182				212				242				272			
123	11.9	0	100	153				183				213				243				273			
124	11.9	0	100	154				184				214				244				274			
125	11.9	0	100	155				185				215				245				275			
126	11.9	1	100	156				186				216				246				276			
127	11.9	1	100	157				187				217				247				277			
128	12.0	1	100	158				188				218				248				278			
129	12.0	1	100	159				189				219				249				279			
130	12.0	1	100	160				190				220				250				280			
131	12.0	0	100	161				191				221				251				281			
132	12.0	0	100	162				192				222				252				282			
133	12.0	0	100	163				193				223				253				283			
134	12.0	0	100	164				194				224				254				284			
135	12.0	0	100	165				195				225				255				285			
136	12.0	0	100	166				196				226				256				286			
137	12.0	0	100	167				197				227				257				287			
138	12.0	0	100	168				198				228				258				288			
139	12.0	0	100	169				199				229				259				289			
140	12.0	0	100	170				200				230				260				290			
141	*	*REFUSA	L	171				201				231				261				291			
142				172				202				232				262				292			
143				173				203				233				263				293			
144				174				204				234				264				294			
145				175				205				235				265				295			
146				176				206				236				266				296			
147				177				207				237				267				297			
148				178				208				238				268				298			
149				179				209				239				269				299			
150				180				210				240				270				300			
<u>Not</u> Ref		er 140 b	olows du	ie to <	0.1 inch	es pene	etration	within	10 blow	s.							Gr	uening		School I River,	Alaska	ake Rep	airs
																				07 CC			
																	August	2019				10332	7-001
																ŀ						FIG. I	

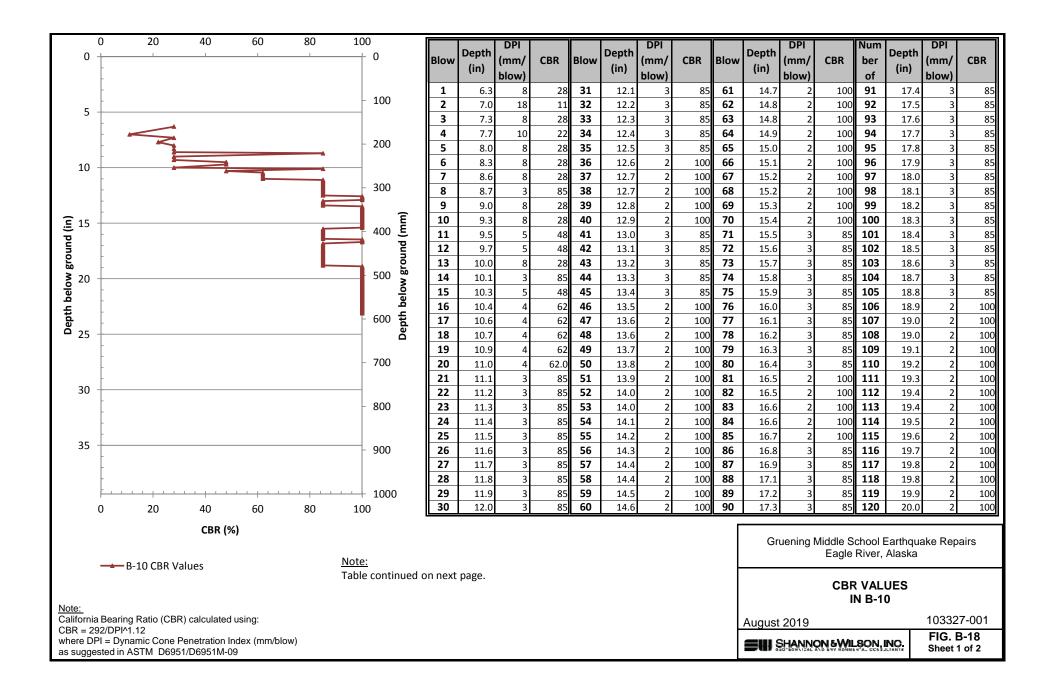
SHANNON & WILSON, INC.


FIG. B-15 Sheet 2 of 2

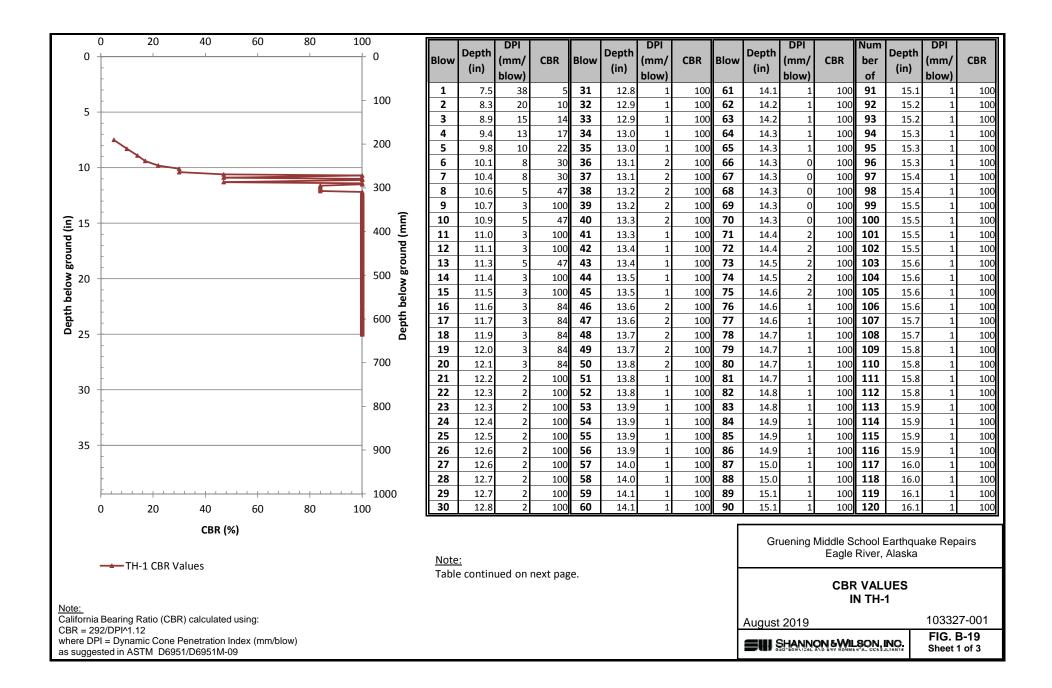
		DPI				DPI				DPI				DPI				DPI			_	DPI	
Blow	Depth	(mm/	CBR	Blow	Depth	(mm/	CBR	Blow	Depth	(mm/	CBR	Blow	Depth	(mm/	CBR	Blow	Depth	(mm/	CBR	Blow	Depth	(mm/	CBR
	(10)	blow)	••••		(in)	blow)	•==		(in)	blow)	•==		(in)	blow)	•==		(in)	blow)	•===		(in)	blow)	
121	13.0	1	100	151	13.4	0	100	181		510117		211		510117		241		5.017		271		510117	
122	13.0	1	100	152	13.4	0	100	182				212				242				272			
123	13.1	1	100	153	13.4	0	100	183				213				243				273			
124	13.1	1	100	154	13.4	0	100	184				214				244				274			
125	13.1	1	100	155	13.4	0	100	185				215				245				275			
126	13.1	0	100	156	13.4	0	100	186				216				246				276			
127	13.1	0	100	157	13.4	0	100	187				217				247				277			
128	13.1	0	100	158	13.4	0	100	188				218				248				278			
129	13.1	0	100	159	13.4	0	100	189				219				249				279			
130	13.1	0	100	160	13.4	0	100	190				220				250				280			
131	13.1	1	100	161		*REFUSA	L	191				221				251				281			
132	13.1	1	100	162				192				222				252				282			
133	13.2	1	100	163				193				223				253				283			
134	13.2	1	100	164				194				224				254				284			
135	13.2	1	100	165				195				225				255				285			
136 137	13.2 13.2	1	100	166 167				196 197				226 227				256 257				286 287			
137	13.2	1 1	100 100	167				197				227				257				287			
130	13.3	1	100	168				198				220				258				280			
140	13.3	1	100	170				200				230				260				290			
141	13.3	1	100	171				201				231			-	261				291			
142	13.3	1	100	172				202				232				262				292			
143	13.4	1	100	173				203				233				263				293			
144	13.4	1	100	174				204				234				264				294			
145	13.4	1	100	175				205				235				265				295			
146	13.4	0	100	176				206				236				266				296			
147	13.4	0	100	177				207				237				267				297			
148	13.4	0	100	178				208				238				268				298			
149	13.4	0	100	179				209				239				269				299			
150	13.4	0	100	180				210				240				270				300			
<u>No</u> Ref		er 160 b	olows du	ie to <	0.1 inch	es pene	etration	within	10 blows	S.						-	Gr	uening	CBF		Alaska	ake Rep	airs
																	August	2010				10332	7-001
																- F	August	2013					

SHANNON & WILSON, INC.

FIG. B-16 Sheet 2 of 2


	Depth	DPI			Depth	DPI			Depth	DPI			Depth	DPI			Depth	DPI			Depth	DPI	
Blow	(in)	(mm/	CBR	Blow	(in)	(mm/	CBR	Blow	(in)	(mm/	CBR	Blow	(in)	(mm/	CBR	Blow	(in)	(mm/	CBR	Blow	(in)	(mm/	CBR
	(111)	blow)			(111)	blow)			(111)	blow)			(11)	blow)			(III)	blow)			(11)	blow)	
121	18.4	1	100	151	19.5	1	100	181				211				241				271			
122	18.5	1	100	152	19.5	1	100	182				212				242				272			
123	18.5	1	100	153	19.6	1	100	183				213				243				273			
124	18.6	1	100	154	19.6	1	100	184				214				244				274			
125	18.6	1	100	155	19.6	1	100	185				215				245				275			
126	18.6	1	100	156	19.6	0	100	186				216				246				276			
127	18.7	1	100	157	19.6	0	100	187				217				247				277			
128	18.7	1	100	158	19.6	0	100	188				218				248				278			
129	18.8	1	100	159	19.6	0	100	189				219				249				279			
130	18.8	1	100	160	19.6	0	100	190				220				250				280			
131	18.8	1	100	161	19.6	0	100	191				221				251				281			
132	18.8	1	100	162	19.6	0	100	192				222				252				282			
133	18.9	1	100	163	19.6	0	100	193				223				253				283			
134	18.9	1	100	164	19.6	0	100	194				224				254				284			
135	18.9	1	100	165	19.6	0	100	195				225				255				285			
136	18.9	1	100	166	3	*REFUSA	L	196				226				256				286			
137	19.0	1	100	167				197				227				257				287			
138	19.0	1	100					198				228				258				288			
139	19.1	1	100	169				199				229				259				289			
140	19.1	1	100	170				200				230				260				290			
141	19.1	1	100	171				201				231				261				291			
142	19.2	1	100	172				202				232				262				292			
143	19.2	1	100	173				203				233				263				293			
144	19.3	1	100					204				234				264				294			
145	19.3	1	100	175				205				235				265				295			
146	19.3	1	100	176				206				236				266				296			
147	19.4	1	100	177				207				237				267				297			
148	19.4	1	100					208				238				268				298			
149	19.5	1	100	179				209				239				269				299			
150	19.5	1	100	180				210				240				270				300			
Note: *Refusal after 165 blows due to < 0.1 inches penetration within 10 blows.														Gr	uening	CBI		Alaska	ake Rep	airs			
																						40000	

103327-001

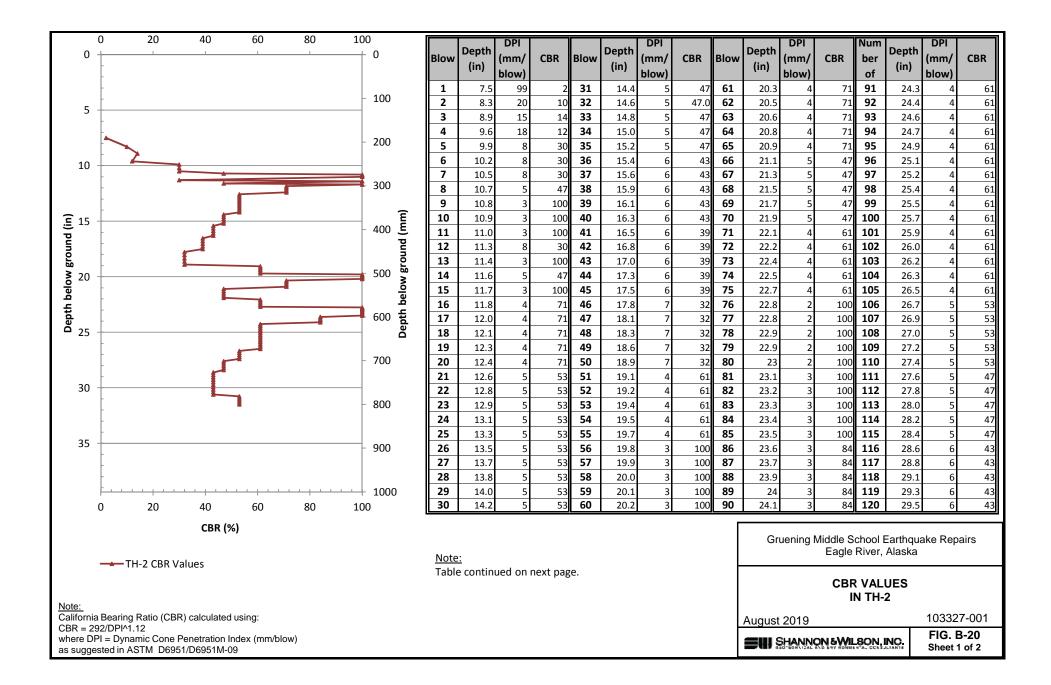

SHANNON & WILSON, INC.

August 2019

FIG. B-17 Sheet 2 of 2

Biow (in) (inv) (Depth (mm/ CBR (in) blow) CBR
Izi Olicy O	blow) Image: Second
122 20.1 2 100 152 21.4 1 100 182 22.5 1 100 212 23.1 0 100 242 272 123 20.2 2 100 153 21.4 1 100 183 22.5 1 100 214 23.1 0 100 243 273 124 20.3 2 100 155 21.5 1 100 185 22.6 1 100 216 244 276 126 20.3 1 100 155 21.5 1 100 186 22.6 1 100 216 247 276 128 20.4 1 100 159 21.6 1 100 188 22.7 1 100 219 249 279 130 20.5 1 100 161 21.6 1 100 192 22.7 1 100 221	
123 20.2 2 100 153 21.4 1 100 183 22.5 1 100 213 23.1 0 100 243 243 273 124 20.2 2 100 155 21.5 1 100 185 22.6 1 100 215 23.1 0 100 244 274 125 20.3 1 100 155 21.5 1 100 186 22.6 1 100 216 *REFUSL 246 275 126 20.4 1 100 159 21.6 1 100 186 22.7 1 100 218 247 247 247 277 128 20.4 1 100 159 21.6 1 100 189 22.7 1 100 218 249 250 279 131 20.5 1 100 150 21.6 1 100 191 22.7 1 100 220 251 251 251 <t< th=""><th></th></t<>	
124 20.2 2 100 154 21.5 1 100 184 22.6 1 100 215 23.1 0 100 245 275 126 20.3 1 100 156 21.5 1 100 185 22.6 1 100 216 ************************************	
125 20.3 2 100 155 21.5 1 100 185 22.6 1 100 216 **REFUSAL 246 247 276 126 20.4 1 100 156 21.5 1 100 186 22.6 1 100 216 **REFUSAL 246 277 128 20.4 1 100 157 21.5 1 100 188 22.7 1 100 218 247 247 247 279 129 20.5 1 100 159 21.6 1 100 189 22.7 1 100 219 248 249 279 280 130 20.5 1 100 160 21.6 1 100 190 22.7 1 100 220 251 251 280 281 132 20.6 1 100 163 21.7 1 100 192 22.7 1 100 224 251 251 28 283	
126 20.3 1 100 156 21.5 1 100 186 22.6 1 100 216 **REFUSAL 246 0 0 277 127 20.4 1 100 157 21.5 1 100 187 22.6 1 100 217 247 247 0 277 128 20.4 1 100 158 21.6 1 100 188 22.7 1 100 218 248 248 278 278 129 20.5 1 100 159 21.6 1 100 190 22.7 1 100 210 250 250 250 281 281 131 20.6 1 100 161 21.6 1 100 193 22.7 1 100 221 251 252 252 281 281 132 20.6 1 100 162 21.7 1 100 223 253 255 283 283 <td< th=""><th></th></td<>	
127 20.4 1 100 157 21.5 1 100 187 22.6 1 100 217 247 0 0 277 128 20.4 1 100 158 21.6 1 100 188 22.7 1 100 218 248 248 279 279 130 20.5 1 100 159 21.6 1 100 189 22.7 1 100 219 249 249 279 279 131 20.5 1 100 160 21.6 1 100 190 22.7 1 100 221 251 250 280 280 132 20.6 1 100 162 21.6 1 100 192 22.7 1 100 223 253 253 253 282 281 133 20.6 1 100 163 21.7 1 100 195 22.8 1 100 224 254 255 255 285<	
128 20.4 1 100 158 21.6 1 100 188 22.7 1 100 218 248 249 279 130 20.5 1 100 159 21.6 1 100 190 22.7 1 100 219 250 250 250 280 131 20.5 1 100 161 21.6 1 100 191 22.7 1 100 221 251 250 280 280 132 20.6 1 100 162 21.6 1 100 192 22.7 1 100 221 253 283 283 133 20.6 1 100 162 21.7 1 100 193 22.8 1 100 224 254 254 284 284 135 20.7 1 100 165 21.7 1 100 195 22.8 1 100 225 255 255 285 286 136	
129 20.5 1 100 159 21.6 1 100 189 22.7 1 100 219 249 249 249 279 130 20.5 1 100 160 21.6 1 100 190 22.7 1 100 220 250 250 250 280 131 20.5 1 100 161 21.6 1 100 191 22.7 1 100 221 251 252 252 282 283 132 20.6 1 100 163 21.7 1 100 193 22.8 1 100 223 253 253 283 283 133 20.7 1 100 164 21.7 1 100 194 22.8 1 100 224 255 255 285 285 136 20.7 1 100 165 21.7 1 100 195 22.8 1 100 226 255 255 255	
130 20.5 1 100 160 21.6 1 100 190 22.7 1 100 221 251 251 251 281 132 20.6 1 100 162 21.6 1 100 192 22.7 1 100 222 251 252 253 253 282 133 20.6 1 100 163 21.7 1 100 193 22.8 1 100 223 253 253 283 283 134 20.7 1 100 164 21.7 1 100 194 22.8 1 100 224 254 254 254 284 284 135 20.7 1 100 166 21.7 1 100 195 22.8 1 100 225 255 255 285 285 136 20.8 2 100 166 21.7 1 100 196 22.9 1 100 227 257 257	
131 20.5 1 100 161 21.6 1 100 191 22.7 1 100 221 251 252 252 282 132 20.6 1 100 162 21.6 1 100 192 22.7 1 100 222 252 253 26 282 133 20.6 1 100 163 21.7 1 100 193 22.8 1 100 223 253 254 283 283 134 20.7 1 100 165 21.7 1 100 195 22.8 1 100 225 255 255 285 285 136 20.8 2 100 166 21.7 1 100 197 22.9 1 100 226 256 255 28 287 138 20.9 2 100 168 21.8 1 100 198 22.9 1 100 227 257 258 288 288	
132 20.6 1 100 162 21.6 1 100 192 22.7 1 100 222 2 252 2 253 2 283 133 20.6 1 100 163 21.7 1 100 193 22.8 1 100 223 2 253 2 283 134 20.7 1 100 164 21.7 1 100 194 22.8 1 100 224 254 255 2 284 284 135 20.7 1 100 165 21.7 1 100 195 22.8 1 100 225 2 255 2 285 285 136 20.8 2 100 166 21.7 1 100 197 22.9 1 100 226 257 256 256 287 287 138 20.9 2 100 168 21.8 1 100 198 22.9 1 100 229 <	
133 20.6 1 100 163 21.7 1 100 193 22.8 1 100 223 253 283 134 20.7 1 100 164 21.7 1 100 194 22.8 1 100 224 255 284 135 20.7 1 100 165 21.7 1 100 195 22.8 1 100 225 255 285 136 20.8 2 100 166 21.7 1 100 197 22.9 1 100 226 255 286 138 20.9 2 100 168 21.8 1 100 199 23.0 1 100 229 259 288 139 20.9 2 100 170	
134 20.7 1 100 164 21.7 1 100 194 22.8 1 100 224 254 255 284 135 20.7 1 100 165 21.7 1 100 195 22.8 1 100 225 255 256 285 136 20.8 2 100 166 21.7 1 100 196 22.8 1 100 226 256 256 286 286 137 20.8 2 100 167 21.8 1 100 197 22.9 1 100 227 257 257 287 288 138 20.9 2 100 168 21.8 1 100 199 23.0 1 100 229 259 259 289 289 140 21.0 2 100 170 21.9 1 100 230 231	
135 20.7 1 100 165 21.7 1 100 195 22.8 1 100 225 255 285 136 20.8 2 100 166 21.7 1 100 196 22.8 1 100 226 256 286 137 20.8 2 100 167 21.8 1 100 197 22.9 1 100 227 257 287 138 20.9 2 100 168 21.8 1 100 198 22.9 1 100 228 258 260 258 288 288 289 249 1 100 229 259 289 289 289 240 260 260 290 290 210 201 230 1 100 230 261 261 261 201<	<u> </u>
136 20.8 2 100 166 21.7 1 100 196 22.8 1 100 226 256 286 287 137 20.8 2 100 167 21.8 1 100 197 22.9 1 100 227 257 287 288 138 20.9 2 100 168 21.8 1 100 198 22.9 1 100 228 258 259 288 289 140 21.0 2 100 169 21.9 1 100 199 23.0 1 100 229 259 289 140 21.0 2 100 171 22.0 2 100 23.0 1 100 231 261 290 291 142 21.1 1 100 172 22.0 2 100 202 23.0 1 <th></th>	
137 20.8 2 100 167 21.8 1 100 197 22.9 1 100 227 257 287 138 20.9 2 100 168 21.8 1 100 198 22.9 1 100 228 258 288 289 139 20.9 2 100 169 21.9 1 100 199 23.0 1 100 229 259 289 289 140 21.0 2 100 170 21.9 1 100 200 23.0 1 100 230 260 290 290 291 141 21.0 1 100 171 22.0 2 100 201 23.0 1 100 231 261 292 294 294 294 294 294 294 294 293 294 294 293 294 294 294	
138 20.9 2 100 168 21.8 1 100 198 22.9 1 100 228 258 259 2 259 259 259 259 259 260 260 290 290 200 210 170 21.9 1 100 199 23.0 1 100 229 260 260 260 290 290 260 260 290 290 290 211 211 100 171 22.0 2 100 201 23.0 1 100 231 260 260 290 291	
139 20.9 2 100 169 21.9 1 100 199 23.0 1 100 229 259 289 140 21.0 2 100 170 21.9 1 100 200 23.0 1 100 230 260 260 200 290 290 141 21.0 1 100 171 22.0 2 100 201 23.0 1 100 231 261 291 291 142 21.1 1 100 172 22.0 2 100 202 23.0 1 100 232 261 292 292 143 21.1 1 100 173 22.1 2 100 203 23.1 1 100 233 263 293 294 294 294 294 294 294 294 294 294 294 294 294 <t< th=""><th></th></t<>	
140 21.0 2 100 170 21.9 1 100 230 1 100 230 1 100 230 1 100 230 1 100 230 1 100 230 1 100 230 1 100 230 1 100 231 1 100 261 1 291 291 142 21.1 1 100 172 22.0 2 100 202 23.0 1 100 232 1 262 1 292 292 143 21.1 1 100 173 22.1 2 100 203 23.1 1 100 233 1 263 1 292 293 294 294 294 294 294 294 <td< th=""><th></th></td<>	
141 21.0 1 100 171 22.0 2 100 23.0 1 100 231 1 100 261 1 291 292 142 21.1 1 100 172 22.0 2 100 202 23.0 1 100 232 1 262 1 292 292 143 21.1 1 100 173 22.1 2 100 203 23.1 1 100 233 1 100 263 1 293 293 293 294 295 294 295 294 295 295	
142 21.1 1 100 172 22.0 2 100 202 23.0 1 100 232 262 292 293 143 21.1 1 100 173 22.1 2 100 203 23.1 1 100 233 263 293 293 144 21.2 1 100 174 22.1 2 100 204 23.1 1 100 233 264 293 294 145 21.2 1 100 175 22.2 2 100 205 23.1 1 100 235 265 295 294 146 21.2 1 100 176 22.2 1 100 206 231 0 100 236 265 295 295 146 21.2 1 100 176 22.2 1 100 206 231 0 100	
143 21.1 1 100 173 22.1 2 100 203 23.1 1 100 233 263 293 294 144 21.2 1 100 174 22.1 2 100 204 23.1 1 100 234 264 294 294 145 21.2 1 100 175 22.2 2 100 205 23.1 1 100 235 265 295 295 146 21.2 1 100 176 22.2 1 100 206 23.1 0 100 236 265 295 296	
144 21.2 1 100 174 22.1 2 100 204 23.1 1 100 234 264 294 145 21.2 1 100 175 22.2 2 100 205 23.1 1 100 235 265 295 146 21.2 1 100 176 22.2 1 100 206 23.1 0 100 236 266 296	
145 21.2 1 100 175 22.2 2 100 205 23.1 1 100 235 235 265 265 295 146 21.2 1 100 176 22.2 1 100 206 23.1 0 100 236 266 295 295	
146 21.2 1 100 176 22.2 1 100 206 23.1 0 100 236 266 296	
147 21.2 1 100 177 22.3 1 100 207 23.1 0 100 237 267 267 297	
148 21.3 1 100 178 22.3 1 100 208 23.1 0 100 238 268 298 298	
149 21.3 1 100 179 22.4 1 100 209 23.1 0 100 239 269 269 299	
150 21.3 1 100 180 22.4 1 100 210 23.1 0 100 240 270 300	
Note: *Refusal after 215 blows due to <0.1 inches penetration within 10 blows. CBR VALU IN B-10 COL August 2019 SHANNON & WILSON IN	JES

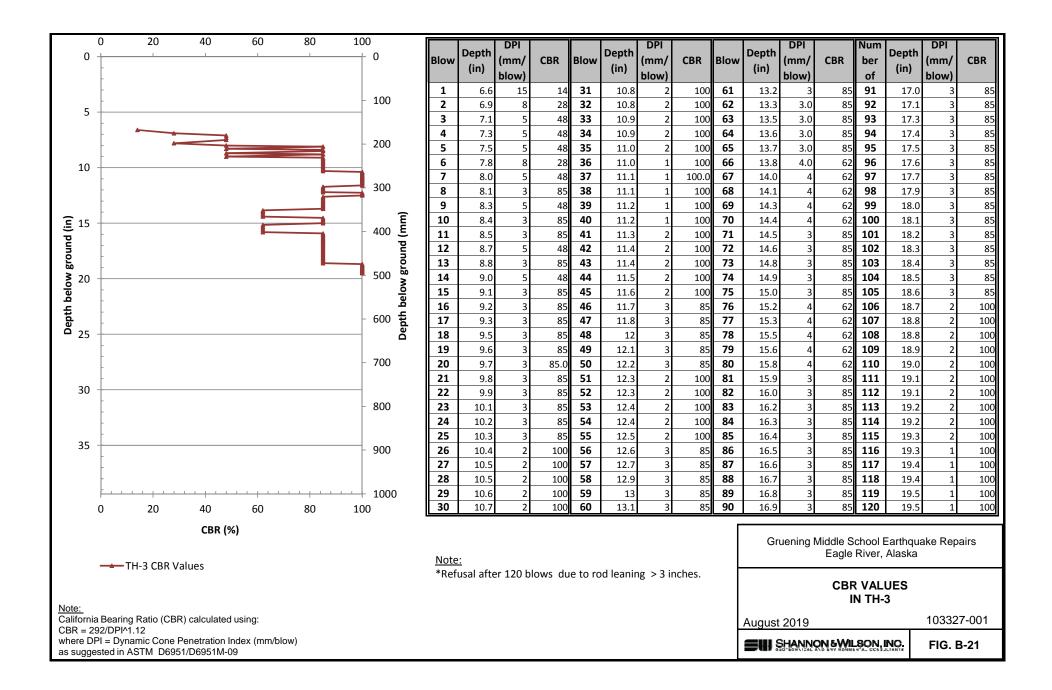
Blow	Depth	DPI (mm/	CBR	Blow	Depth	DPI (mm/	CBR	Blow	Depth	DPI (mm/	CBR	Blow	Depth	DPI (mm/	CBR	Blow	Depth	DPI (mm/	CBR	Blow	Depth	DPI (mm/	CBR
BIOW	(in)	blow)	CDR	BIOW	(in)	blow)	CDK	BIOW	(in)	blow)	CDK	DIOW	(in)	blow)	CDK	BIOW	(in)	blow)	CDK	BIOW	(in)	blow)	CDR
121	16.1	1	100	151	17.3	1	100	181	18.6	2	100	211	20.2	2	100	241	21.9	2	100	271	23.6	1	100
122	16.2	1	100	152	17.4	1	100	182	18.6	2	100.0	212	20.2	2	100.0	242	21.9	2	100	272	23.7	1	100
123	16.2	1	100	153	17.4	1	100	183	18.7	2	100	213	20.3	2	100	243	22.0	2	100	273	23.7	1	100
124	16.3	1	100	154	17.5	1	100	184	18.7	2	100	214	20.3	2	100	244	22.0	2	100	274	23.8	1	100
125	16.3	1	100	155	17.5	1	100	185	18.8	2	100	215	20.4	2	100	245	22.1	2	100	275	23.8	1	100
126	16.3	1	100	156	17.5	1	100	186	18.8	1	100	216	20.5	1	100	246	22.2	2	100	276	23.8	1	100
127	16.4	1	100	157	17.6	1	100	187	18.9	1	100	217	20.5	1	100	247	22.3	2	100	277	23.9	1	100
128	16.4	1	100	158	17.6	1	100	188	18.9	1	100	218	20.6	1	100	248	22.3	2	100	278	23.9	1	100
129	16.5	1	100	159	17.7	1	100	189	19.0	1	100	219	20.6	1	100	249	22.4	2	100	279	24.0	1	100
130	16.5	1	100	160	17.7	1	100	190	19.0	1	100	220	20.7	1	100	250	22.5	2	100	280	24.0	1	100
131	16.6	2	100	161	17.7	1	100	191	19.1	2	100	221	20.7	1	100	251	22.5	1	100	281	24.0	1	100
132	16.6	2	100	162	17.8	1	100	192	19.1	2	100	222	20.8	1	100	252	22.6	1	100	282	24.1	1	100
133	16.7	2	100	163	17.8	1	100	193	19.2	2	100	223	20.8	1	100	253	22.6	1	100	283	24.1	1	100
134	16.7	2	100	164	17.9	1	100	194	19.2	2	100	224	20.9	1	100	254	22.7	1	100	284	24.2	1	100
135	16.8	2	100	165	17.9	1	100	195	19.3	2	100	225	20.9	1	100	255	22.7	1	100	285	24.2	1	100
136	16.8	1	100	166	17.9	1	100	196	19.3	1	100	226	21.0	2	100	256	22.8	2	100	286	24.2	1	100
137	16.8	1	100	167	18.0	1	100	197	19.4	1	100	227	21.0	2	100	257	22.8	2	100	287	24.2	1	100
138	16.9	1	100	168	18.0	1	100	198	19.4	1	100	228	21.1	2	100	258	22.9	2	100	288	24.3	1	100
139	16.9 16.9	1	100	169 170	18.1	1	100	199	19.5	1	100	229	21.1 21.2	2	100	259	22.9	2	100	289 290	24.3	1	100
140		1	100	170	18.1	1	100	200 201	19.5	2	100	230 231		2	100	260 261	23.0	2	100	290	24.3 24.3	1	100
141 142	16.9 17.0	1	100 100	171	18.1 18.2	1	100 100	201	19.6 19.6	2	100 100	231	21.3 21.3	2	100 100	261	23.1 23.1	2	100 100	291	24.3	1	100 100
142	17.0	1	100	172	18.2	1	100	202	19.0	2	100	232	21.5	2	100	262	23.1	2	100	292	24.4	1	100
144	17.0	1	100	174	18.3	1	100	203	19.7	2	100	233	21.4	2	100	263	23.2	2	100	294	24.4	1	100
144	17.1	1	100	174	18.3	1	100	204	19.7	2	100	234	21.4	2	100	265	23.2	2	100	294	24.5	1	100
145	17.1	1	100	176	18.3	1	100	205	19.8	2	100	235	21.5	2	100	265	23.3	2	100	296	24.5	1	100
147	17.2	1	100	177	18.4	1	100	207	19.9	2	100	237	21.0	2	100	267	23.4	2	100	297	24.5	1	100
148	17.2	1	100	178	18.4	1	100	208	20.0	2	100	238	21.0	2	100	268	23.5	2	100	298	24.6	1	100
149	17.3	1	100	179	18.5	1	100	209	20.0	2	100	239	21.7	2	100	269	23.5	2	100	299	24.6	- 1	100
150	17.3	1	100	180	18.5	1	100	210	20.1	2	100	240	21.8	2	100	270	23.6	2	100	300	24.6	1	100
Note: Table continued on next page. Gruening Middle School Earthquak Eagle River, Alaska CBR VALUES IN TH-1 CONT'D												ake Rep	airs										
																	August	: <u>20</u> 19				10332	7-001
																	SM :			SON,	NC.	FIG. E	-

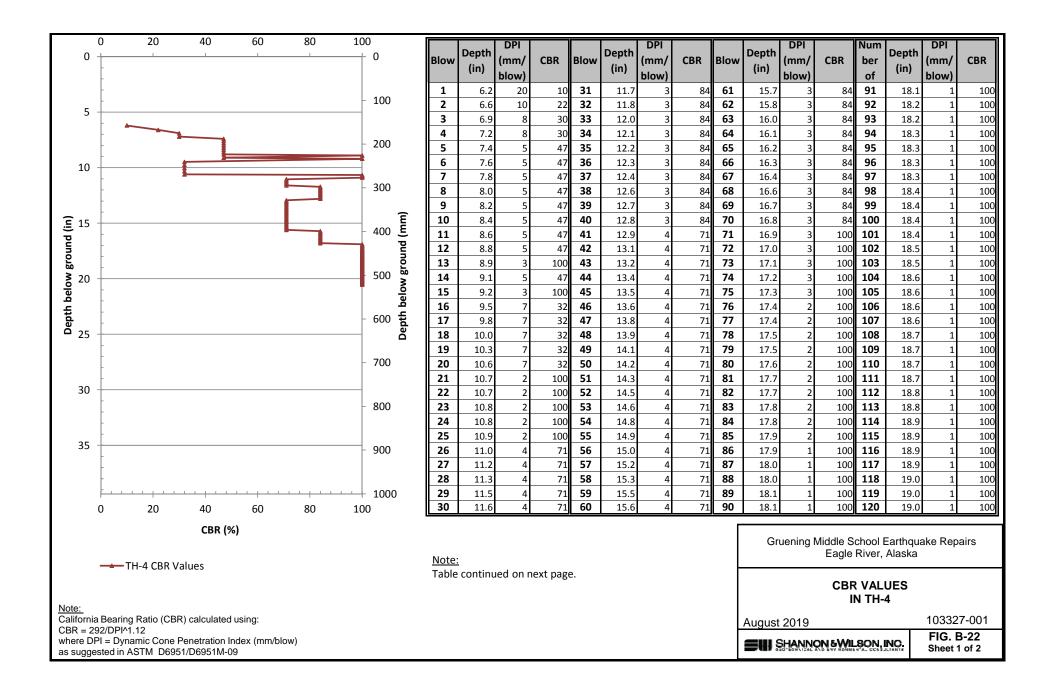

	Donth	DPI			Depth	DPI			Donth	DPI			Donth	DPI			Donth	DPI			Depth	DPI	
Blow	Depth	(mm/	CBR	Blow		(mm/	CBR	Blow	Depth	(mm/	CBR	Blow	Depth	(mm/	CBR	Blow	Depth	(mm/	CBR	Blow		(mm/	CBR
	(in)	blow)			(in)	blow)			(in)	blow)			(in)	blow)			(in)	blow)			(in)	blow)	
301	24.6	1	100	331	25.0	0	100	361				391				421				451			
302	24.6	1	100	332	25.0	0	100	362				392				422				452			
303	24.7	1	100	333	25.0	0	100	363				393				423				453			
304	24.7	1	100	334	25.0	0	100	364				394				424				454			
305	24.7	1	100	335	25.0	0	100	365				395				425				455			
306	24.7	0	100	336	25.0	0	100	366				396				426				456			
307	24.7	0	100	337	25.0	0	100	367				397				427				457			
308	24.7	0	100	338	25.0	0	100	368				398				428				458			
309	24.7	0	100	339	25.0	0	100	369				399				429				459			
310	24.7	0	100	340	25.0	0	100	370				400				430				460			
311	24.7	1	100	341	3	*REFUSA	L	371				401				431				461			
312	24.7	1	100	342				372				402				432				462			
313	24.8	1	100	343				373				403				433				463			
314	24.8	1	100	344				374				404				434				464			
315	24.8	1	100	345				375				405				435				465			
316	24.8	1	100					376				406				436				466			
317	24.8	1	100	347				377				407				437				467			
318	24.9	1	100	348				378				408				438				468			
319	24.9	1	100	349				379				409				439				469			
320	24.9	1	100	350				380				410				440				470			
321	24.9	0	100					381				411				441				471			
322	24.9	0	100	352				382				412				442				472			
323	24.9	0	100	353				383				413				443				473			
324	24.9	0	100	354				384				414				444				474			
325	24.9	0	100	355				385				415				445				475			
326	24.9	1	100	356				386				416				446				476			
327	24.9	1	100	357				387				417				447				477			
328	25.0	1	100					388				418				448				478			
329	25.0	1	100	359				389				419				449				479			
330	25.0	1	100	360				390				420				450				480			
<u>Not</u> *Re		fter 340) blows d	lue to <	< 0.1 inc	hes pen	etration	withir	n 10 blov	ws.							Gr	uening	CBI	River,	Alaska	ake Rep	airs

103327-001

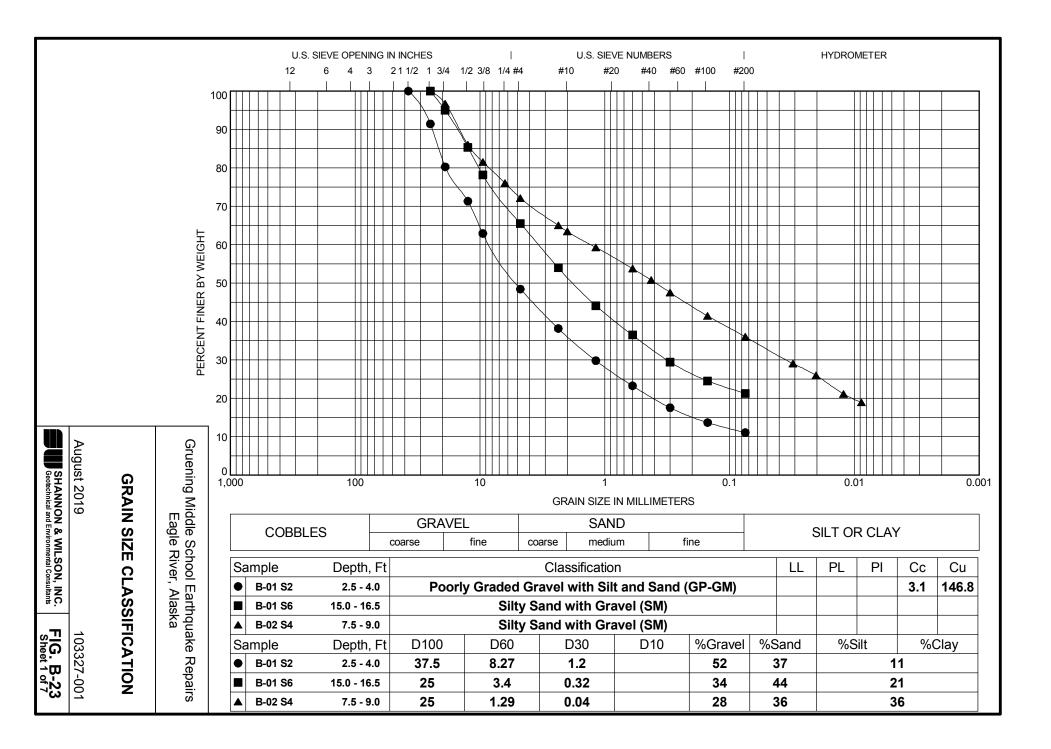
SHANNON & WILSON, INC.

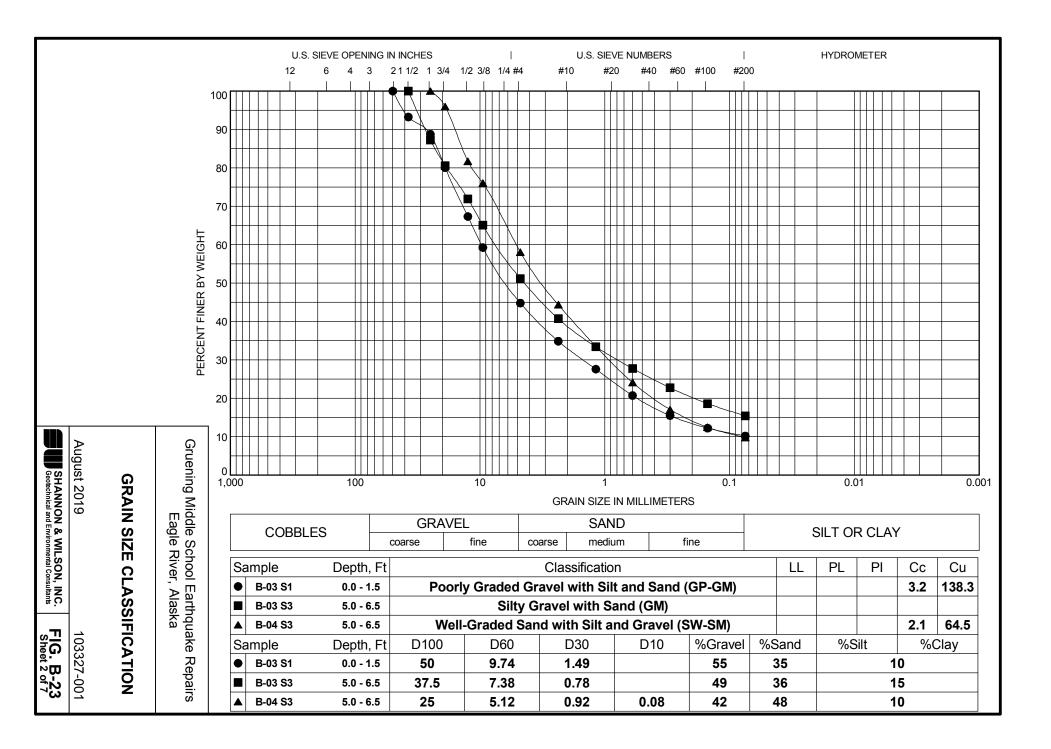
August 2019

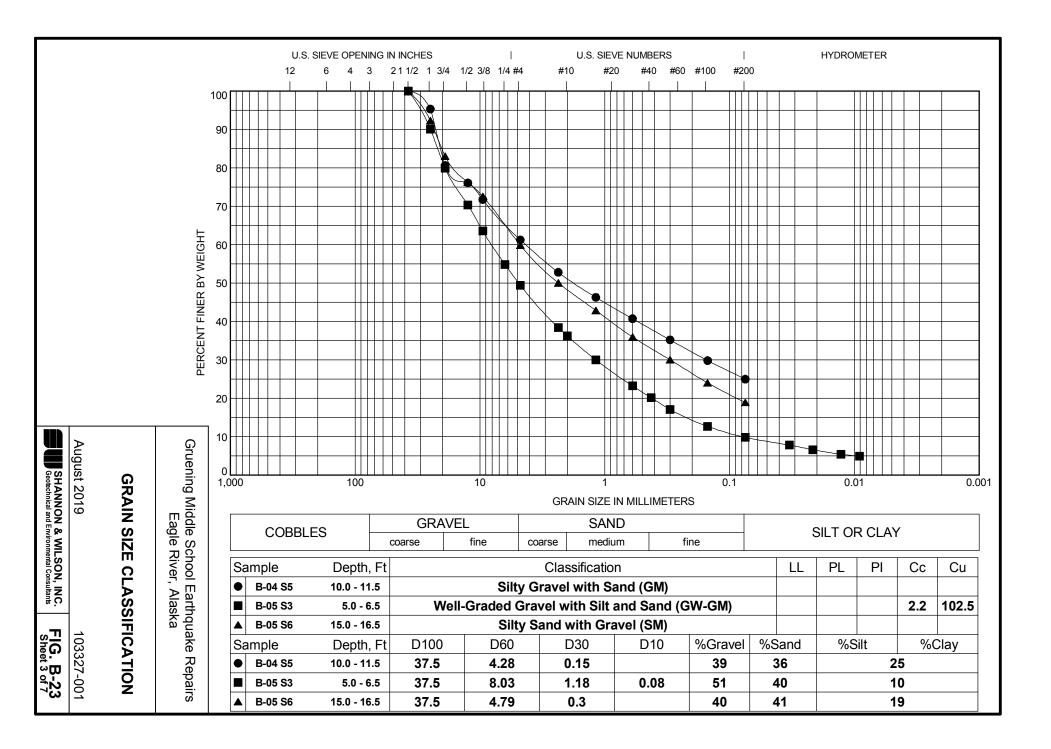

FIG. B-19 Sheet 3 of 3

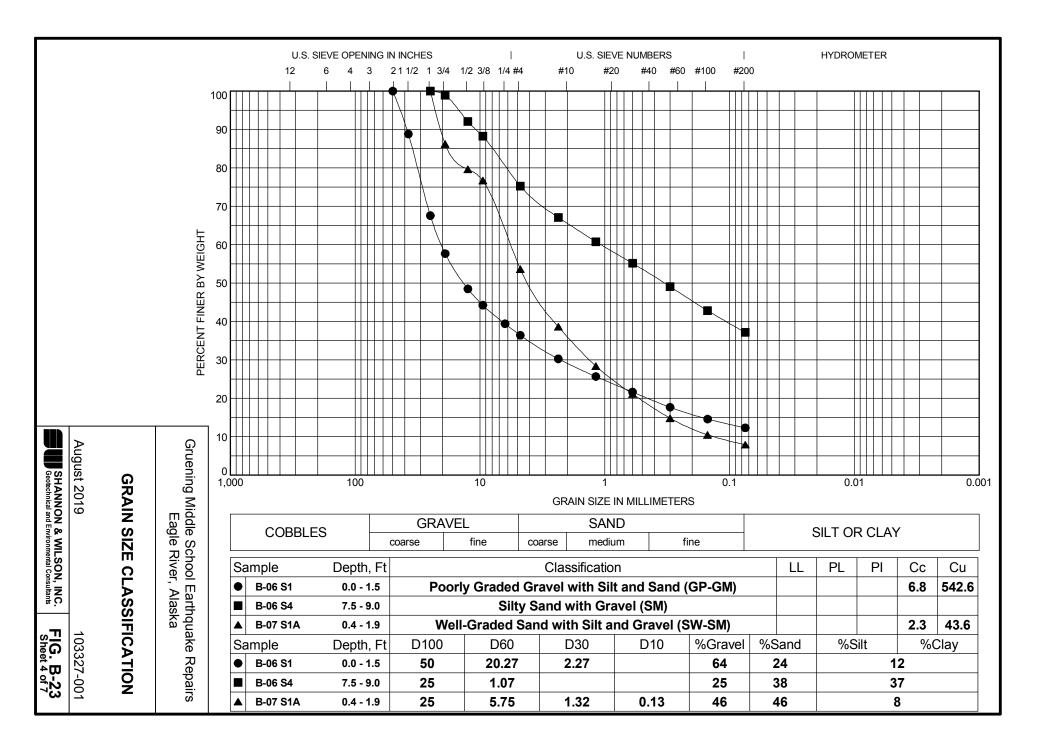


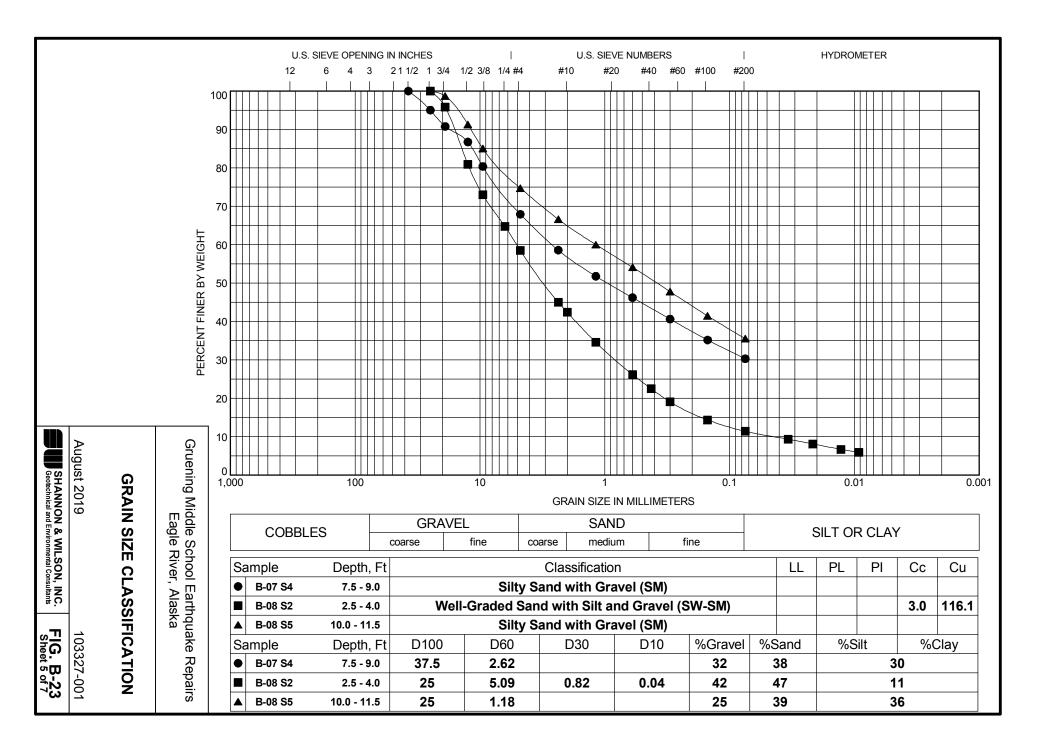
		DPI				DPI				DPI				DPI				DPI		1		DPI	ſ
Plan	Depth		CBR	Blow	Depth		CBR	Blow	Depth		CBR	Blow	Depth		CBR	Blow	Depth		CBR	Diam	Depth		CRD
Blow	(in)	(mm/	CBR	BIOW	(in)	(mm/	CBR	BIOW	(in)	(mm/	CBR	BIOW	(in)	(mm/	CBR	BIOW	(in)	(mm/	CBR	Blow	(in)	(mm/	CBR
		blow)				blow)		404		blow)				blow)				blow)		0.74		blow)	
121	29.7	6	43	151				181				211				241				271			
122	29.9	6	43	152				182				212				242				272			
123	30.2	6	43	153				183				213				243				273			
124	30.4	6	43	154				184				214				244				274			
125	30.6	6	43	155				185				215				245				275			
126	30.8	5	53	156				186				216				246				276			
127	31.0	5	53	157				187				217				247				277			
128	31.1	5	53	158				188				218				248				278			
129	31.3	5	53	159				189				219				249				279			
130	31.5	5	53	160				190				220				250				280			
131	*E	ND OF R	OD	161				191				221				251				281			
132				162				192				222				252				282			
133				163				193				223				253				283			
134				164				194				224				254				284			
135				165				195				225				255				285			
136				166				196				226				256				286			
137				167				197				227				257				287			
138				168				198				228				258				288			
139				169				199				229				259				289			
140				170				200				230				260				290			
141				171				201				231				261				291			
142				172				202				232				262				292			
143				173				203				233				263				293			
144				174				204				234				264				294			
145				175				205				235				265				295			
146				176				206				236				266				296			
147				177				207				237				267				297			
148				178				208				238				268				298			
149				179				209				239				269				299			
150				180				210				240				270				300			
Gruening Middle School Earthquake Repairs Eagle River, Alaska													airs										
Not																			Lagie		/ 10310		
*Reached the end of the road after 130 blows.													CBR VALUES IN TH-2 CONT'D										
													August	2019				10332	27-001				
	+											. lagaot					FIG						

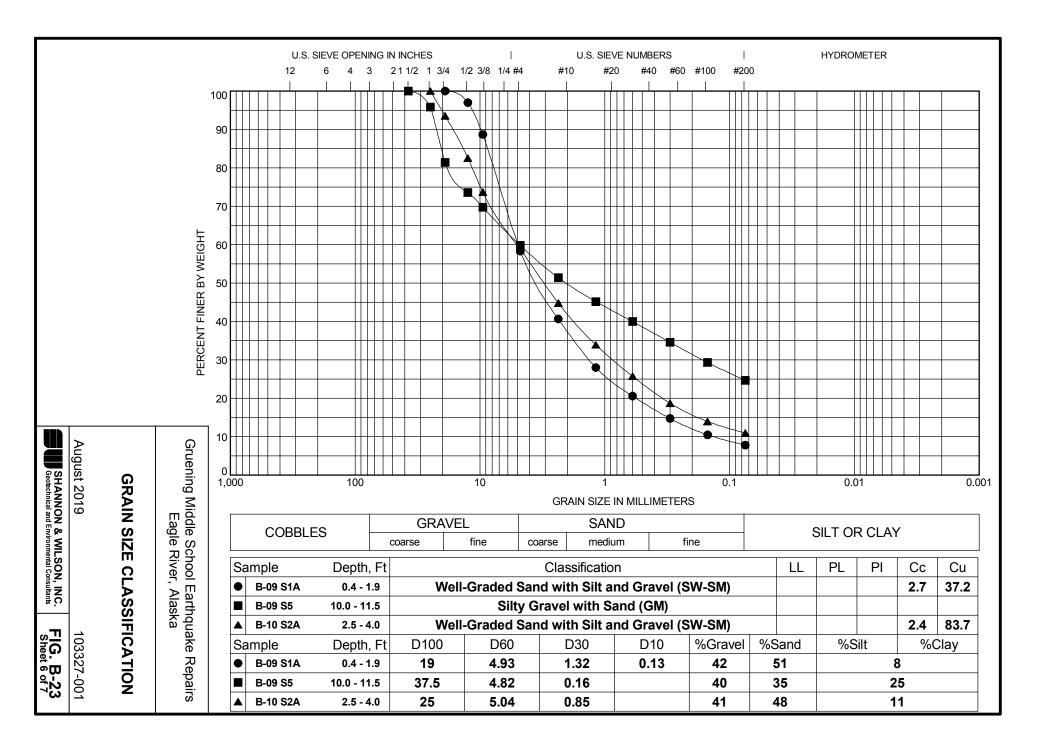

SHANNON & WILSON, INC.

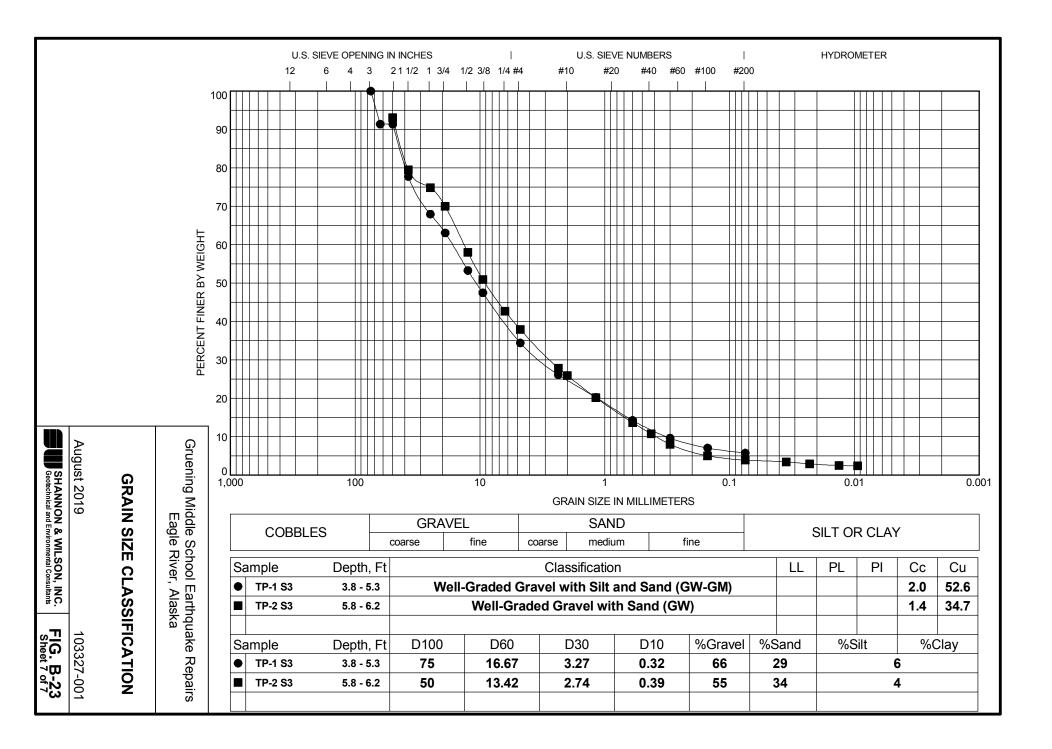

FIG. B-20 Sheet 2 of 2

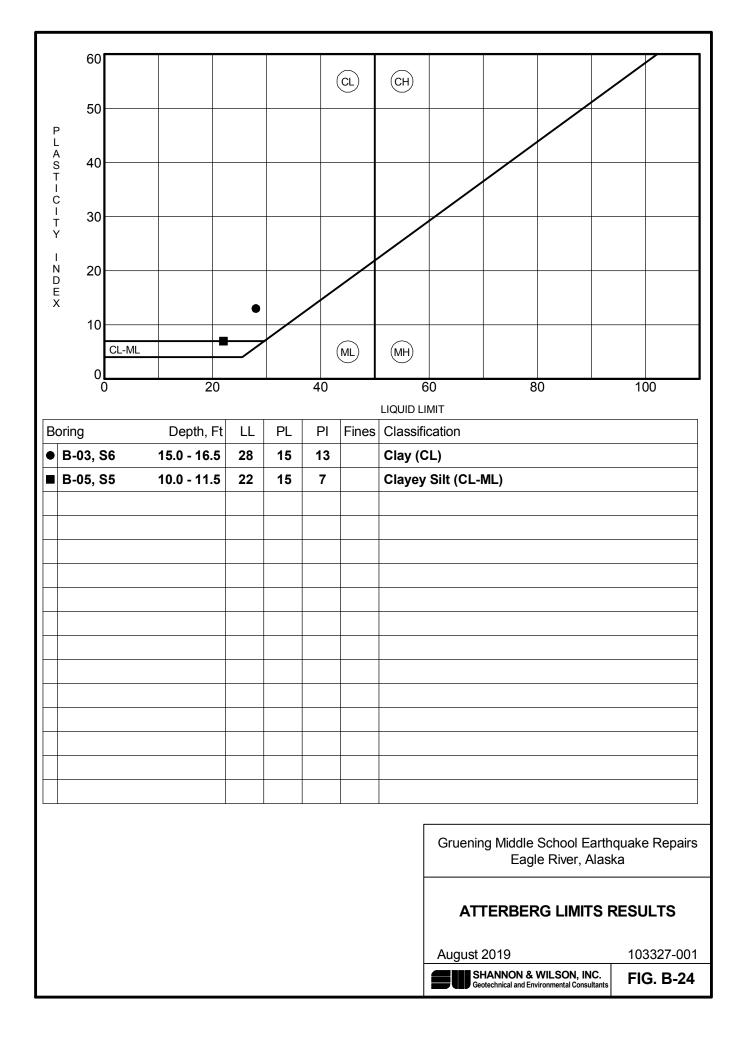





Blow 121 122 123 124	Depth (in) 19.0 19.0	(mm/ blow)	CBR	Blow	Depth				L JONTN				Denth				Denth						
122 123 124	19.0 19.0				(in)	(mm/	CBR	Blow	Depth (in)	(mm/	CBR	Blow	Depth (in)	(mm/	CBR	Blow	Depth (in)	(mm/	CBR	Blow	Depth (in)	(mm/	CBR
122 123 124	19.0	1			(11)	blow)			(111)	blow)			(11)	blow)			(11)	blow)			(111)	blow)	
123 124		-	100		19.6	1	100	181	20.2	1	100	211	-	*REFUSA	L	241				271			
124		1	100	152	19.6	1	100	182	20.2	1	100	212				242				272			
	19.1	1	100	153	19.7	1	100	183	20.3	1	100	213				243				273			
	19.1	1	100	154	19.7	1	100	184	20.3	1	100	214				244				274			
125	19.1	1	100	155	19.7	1	100	185	20.3	1	100	215				245				275			
126	19.1	1	100	156	19.7	1	100	186	20.3	0		216				246				276			
127	19.1	1	100	157	19.7	1	100	187	20.3	0	100	217				247				277			
128	19.2	1	100	158	19.8	1	100	188	20.3	0	100	218				248				278			
129	19.2	1	100	159	19.8	1	100	189	20.3	0		219				249				279			
130	19.2	1	100	160	19.8	1	100	190	20.3	0	100	220				250				280			
131	19.2	1	100	161	19.8	1	100	191	20.3	1	100	221				251				281			
132	19.2	1	100		19.8	1	100	192	20.3	1	100	222				252				282			
133	19.3	1	100	163	19.9	1	100	193	20.4	1	100	223				253				283			
134	19.3	1	100	164	19.9	1	100	194	20.4	1	100	224				254				284			
135	19.3	1	100	165	19.9	1	100	195	20.4	1	100	225				255				285			
136	19.3	1	100	166	19.9	1	100	196	20.4	1	100	226				256				286			
137	19.3	1	100	167	19.9	1	100	197	20.4	1	100	227				257				287			
138	19.4	1	100	168	20.0	1	100	198	20.5	1	100	228				258				288			
139	19.4	1	100	169	20.0	1	100	199	20.5	1	100	229				259				289			
140	19.4	1	100	170	20.0	1	100	200	20.5	1	100	230				260				290			
141 142	19.4 19.4	0	100	171 172	20.0 20.0	1	100	201 202	20.5	0		231 232				261 262				291 292			
142	19.4	0	100	172	20.0	1	100	202	20.5	0		232				262				292			
145		0	100	175	20.1	1	100	203	20.5 20.5	0	100	233				263				295			
144	19.4 19.4	0	100 100	174	20.1	1	100 100	204	20.5	0	100 100	234				264				294			
145	19.4	1	100	175	20.1	1	100	205	20.5	0		235				265				296			
140	19.4	1	100	170	20.1	1	100	200	20.5	0	100	230				267				297			
147	19.5	1	100	177	20.1	1	100	207	20.5	0	100	237				267				297			
148	19.5	1	100	178	20.2	1	100	208	20.5	0		238				269				299			
150	19.6	1	100		20.2	0.508	100	210	20.5	0	100	240				270				300			
Note: *Refusal after 210 blows due to <0.1 inches pentration within 10 blows. CBR VALUES IN TH-4 CONT'D August 2019													ake Rep 10332 FIG. I Sheet :	27-001 B-22									







SHANNON & WILSON, INC.

APPENDIX C

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

Attachment to and part of Report 103327-001

Date: August 2019 To: McCool Carlson Green

IMPORTANT INFORMATION ABOUT YOUR GEOTECHNICAL/ENVIRONMENTAL REPORT

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include: the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used: (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors which were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events, and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimation always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland